百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Python语法之:Pandas数据合并总结

liuian 2025-04-06 18:06 21 浏览

Pandas有concat、append、join和merge四种方法用于dataframe拼接


concat、append、join、merge 区别如下:

1、.concat():pandas的顶级方法,提供了axis设置可用于df间行方向(增加行,下同)或列方向(增加列,下同)进行内联或外联拼接操作

2、.append():dataframe数据类型的方法,提供了行方向的拼接操作

3、.join():dataframe数据类型的方法,提供了列方向的拼接操作,支持左联、右联、内联和外联四种操作类型

4、.merge():pandas的顶级方法,提供了类似于SQL数据库连接操作的功能,支持左联、右联、内联和外联等全部四种SQL连接操作类型

concat

concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,

keys=None, levels=None, names=None, verify_integrity=False,

copy=True)

"""

常用参数说明:

axis:拼接轴方向,默认为0,沿行拼接;若为1,沿列拼接

join:默认外联'outer',拼接另一轴所有的label,缺失值用NaN填充;内联'inner',只拼接另一轴相同的label;

join_axes: 指定需要拼接的轴的labels,可在join既不内联又不外联的时候使用

ignore_index:对index进行重新排序

keys:多重索引

"""

import pandas as pd
def df_maker(cols, idxs):
    return pd.DataFrame({c:[c+str(i) for i in idxs] for c in cols}, index=idxs)

df1 = df_maker('abc',[1,2,3])
df2 = df_maker('cde',[3,4,5])
print(df1)
print(df2)
print(pd.concat([df1,df2]))    # 默认沿axis=0,join=‘out’的方式进行concat  
print(pd.concat([df1,df2], ignore_index=True))    # 重新设定index(效果类似于pd.concat([df1,df2]).reset_index(drop=True))
print(pd.concat([df1,df2], axis=1))   # 沿列进行合并
print(pd.concat([df1,df2], axis=1, join='inner'))    # 沿列进行合并,采用外联方式因为行中只有index=3是重复的,所以只有一行
print(pd.concat([df1,df2], axis=1, join_axes=[df1.index]))   # 指定只取df1的index

from pandas import Index
index = Index([1,2,4])
print(pd.concat([df1,df2], axis=1, join_axes=[index]))   # 自定义index

print(pd.concat([df1,df2], axis=0,keys=["第一组","第二组"]))   # 通过key定义多重索引

append

append(self, other, ignore_index=False, verify_integrity=False)

"""

常用参数说明:

other:另一个df

ignore_index:若为True,则对index进行重排

verify_integrity:对index的唯一性进行验证,若有重复,报错。若已经设置了ignore_index,则该参数无效

"""

import pandas as pd
def df_maker(cols, idxs):
    return pd.DataFrame({c:[c+str(i) for i in idxs] for c in cols}, index=idxs)


df1 = df_maker('abc',[1,2,3])
df2 = df_maker('cde',[3,4,5])
print(df1.append(df2))    # 效果类似于pd.concat([df1,df2]) 
print(df1.append(df2,ignore_index=True))    # index重排,效果类似于pd.concat([df1, df2], ignore_index=True)
#print(df1.append(df2,verify_integrity=True))    # 因为两个df均有index=3,所以报错

join

join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)

"""

常用参数说明:

on:参照的左边df列名key(可能需要先进行set_index操作),若未指明,按照index进行join

how:{‘left’, ‘right’, ‘outer’, ‘inner’}, 默认‘left’,即按照左边df的index(若声明了on,则按照对应的列);若为‘right’abs照左边的df

若‘inner’为内联方式;若为‘outer’为全连联方式。

sort:是否按照join的key对应的值大小进行排序,默认False

lsuffix,rsuffix:当left和right两个df的列名出现冲突时候,通过设定后缀的方式避免错误

"""

import pandas as pd
import numpy as np

df3 = pd.DataFrame({'lkey':['foo','bar','baz','foo'], 'value':np.arange(1,5)})
df4 = pd.DataFrame({'rkey':['foo','bar','qux','bar'], 'value':np.arange(3,7)})
print(df3)
print(df4)
#print(df3.join(df4))     # 两者有相同的列名‘value’,所以报错
print(df3.join(df4 , lsuffix='_df3', rsuffix='_df4'))    # 通过添加后缀避免冲突
print(df3.set_index('lkey').join(df4.set_index('rkey'), how='outer',lsuffix='_df3',rsuffix='_df4'))    # 可以通过将两边的key进行set_index
print(df3.join(df4.set_index('rkey'), on='lkey',lsuffix='_df3',rsuffix='_df4'))   
# 也可以通过设置后边df中key,并通过on与指定的左边df中的列进行合并,返回的index不变

merge

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,

left_index=False, right_index=False, sort=False,

suffixes=('_x', '_y'), copy=True, indicator=False,

validate=None):

"""

既可作为pandas的顶级方法使用,也可作为DataFrame数据结构的方法进行调用

常用参数说明:

how:{'left’, ‘right’, ‘outer’, ‘inner’}, 默认‘inner’,类似于SQL的内联。'left’类似于SQL的左联;'right’类似于SQL的右联;

‘outer’类似于SQL的全联。

on:进行合并的参照列名,必须一样。若为None,方法会自动匹配两张表中相同的列名

left_on: 左边df进行连接的列

right_on: 右边df进行连接的列

suffixes: 左、右列名称前缀

validate:默认None,可定义为“one_to_one” 、“one_to_many” 、“many_to_one”和“many_to_many”,即验证是否一对一、一对多、多对一或

多对多关系

"""

"""

SQL语句复习:

内联:SELECT a.*, b.* from table1 as a inner join table2 as b on a.ID=b.ID

左联:SELECT a.*, b.* from table1 as a left join table2 as b on a.ID=b.ID

右联:SELECT a.*, b.* from table1 as a right join table2 as b on a.ID=b.ID

全联:SELECT a.*, b.* from table1 as a full join table2 as b on a.ID=b.ID

"""

import pandas as pd
df3 = pd.DataFrame({'lkey':['foo','bar','baz','foo'], 'value':np.arange(1,5)})
df4 = pd.DataFrame({'rkey':['foo','bar','qux','bar'], 'value':np.arange(3,7)})
print(df3)
print(df4)
print(pd.merge(df3,df4))       # on为None,自动找寻相同的列名,即为'value',且默认为内联
print(pd.merge(df3,df4,how='outer'))   # 外联模式下
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey'))   # 默认内联,2个foo*2个bar
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='left'))    # 以左边的df3为标准进行连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='right'))    # 以右边的df4为标准进行连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='outer'))    # 全连接
print(pd.merge(df3, df4, left_on='lkey',right_on='rkey', how='inner'))    # 内连接

相关推荐

总结下SpringData JPA 的常用语法

SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...

解决JPA在多线程中事务无法生效的问题

在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...

PostgreSQL系列(一):数据类型和基本类型转换

自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...

基于MCP实现text2sql

目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...

ORACLE 错误代码及解决办法

ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...

从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%

作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...

010:通过 MCP PostgreSQL 安全访问数据

项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...

发现了一个好用且免费的SQL数据库工具(DBeaver)

缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...

微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅

IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...

数据库管理工具Navicat Premium最新版发布啦

管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...

50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?

北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...

揭秘:一条SQL语句的执行过程是怎么样的?

数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...

各家sql工具,都闹过哪些乐子?

相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...

详解PG数据库管理工具--pgadmin工具、安装部署及相关功能

概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...

Enpass for Mac(跨平台密码管理软件)

还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...