百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

10倍压缩比?Lindorm与其他数据库实测大比拼

liuian 2025-03-29 19:28 41 浏览

引言

Lindorm是一款阿里云推出的云原生超融合多模数据库。Lindorm在阿里内部已经使用长达10年之久,是阿里集团内部数据体量最大,覆盖业务最广的数据库产品之一。目前Lindorm在阿里云上也成为了众多大数据用户的选择。用户选择Lindorm,除了它丰富的多模处理能力,超强的性能之外,一个重要的点就是Lindorm对数据的压缩比非常高,能够给用户带来非常大的存储成本节省。

空说无凭,面对不同用户的不同场景,Lindorm究竟能做到多少压缩比?相对于其他开源数据库,Lindorm能有多好的表现?本文特地选取了订单、车联网、日志和用户行为这四个在Lindorm上常见的场景,使用真实的数据集对各个数据库的压缩表现进行了评测。

其中,Lindorm使用了阿里云发行最新版本,Lindorm默认使用的压缩算法是深度优化的ZSTD,并且Lindorm在ZSTD上做了字典采样优化,本文分别测试了Lindorm默认压缩和开启了字典压缩后的效果。

MySQL使用了8.0版本,MySQL虽然支持zlib压缩,但使用MySQL的用户基本不会开启压缩,因为开启压缩会对性能产生严重影响,因此我们测试的是常见的MySQL默认不开启压缩的情况

HBase使用了2.3.4版本,虽然HBase后续版本支持了ZSTD,但需要高版本Hadoop支持,同时开源集成的ZSTD并不稳定,非常容易core dump。根据我们的了解,绝大部分自建HBase用户都是使用SNAPPY压缩方法,因此本文使用HBase的SNAPPY压缩进行对比。

MongoDB使用了5.0版本,MongoDB默认使用的是SNAPPY压缩,同时MongoDB支持将压缩算法改成ZSTD,因此我们测试了MongoDB在两种压缩算法下的表现。

本文使用测试数据均来自开源数据集,大家也可以拿同样的数据集和相关语句对结果进行复现。

1.订单场景

1.1 数据准备

使用基准测试程序TPC-H,TPC-H是业界常用的一套Benchmark,由TPC委员会制定发布,用于评测数据库的分析型查询能力。

TPC-H下载

下载文件 TPC-H_Tools_v3.0.0.zip

生成数据

# unzip TPC-H_Tools_v3.0.0.zip
# cd TPC-H_Tools_v3.0.0/dbgen
# cp makefile.suite makefile
# vim makefile
################生成ORACLE数据库的脚本和数据,主要修改以下字段
CC = gcc
DATABASE = ORACLE
MACHINE = LINUX
WORKLOAD = TPCH
################
# make  --生成dbgen
# ./dbgen -s 10  --生成10GB数据

当前目录下可以看到多了8个*.tbl文件,就是生成好的数据文件,每一个文件对应一张表。这里选择其中的ORDERS.tbl,文件大小1.76GB,共有数据1500万行,其对应表结构如下:

Field

Type

O_ORDERKEY

int

O_CUSTKEY

int

O_ORDERSTATUS

char(1)

O_TOTALPRICE

decimal(15,2)

O_ORDERDATE

date

O_ORDERPRIORITY

char(15)

O_CLERK

char(15)

O_SHIPPRIORITY

int

O_COMMENT

varchar(79)

1.2 建表

MySQL

CREATE TABLE ORDERS  ( O_ORDERKEY       INTEGER NOT NULL,
                       O_CUSTKEY        INTEGER NOT NULL,
                       O_ORDERSTATUS    CHAR(1) NOT NULL,
                       O_TOTALPRICE     DECIMAL(15,2) NOT NULL,
                       O_ORDERDATE      DATE NOT NULL,
                       O_ORDERPRIORITY  CHAR(15) NOT NULL,
                       O_CLERK          CHAR(15) NOT NULL,
                       O_SHIPPRIORITY   INTEGER NOT NULL,
                       O_COMMENT        VARCHAR(79) NOT NULL);

MongoDB

db.createCollection("ORDERS")

Lindorm

# lindorm-cli
CREATE TABLE ORDERS  ( O_ORDERKEY       INTEGER NOT NULL,
                      O_CUSTKEY        INTEGER NOT NULL,
                      O_ORDERSTATUS    CHAR(1) NOT NULL,
                      O_TOTALPRICE     DECIMAL(15,2) NOT NULL,
                      O_ORDERDATE      DATE NOT NULL,
                      O_ORDERPRIORITY  CHAR(15) NOT NULL,
                      O_CLERK          CHAR(15) NOT NULL,
                      O_SHIPPRIORITY   INTEGER NOT NULL,
                      O_COMMENT        VARCHAR(79) NOT NULL,
                      primary key(O_ORDERKEY));

Hbase

create 'ORDERS', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}

1.3 压缩效果对比

数据库

Lindorm

(默认压缩)

Lindorm

(开启字典压缩)

HBase

MySQL

MongoDB

(默认snappy)

MongoDB

(zstd)

表大小

784 MB

639 MB

1.23 GB

2.10 GB

1.63 GB

1.32 GB


2 车联网场景

使用NGSIM数据集,NGSIM 的全称为 Next Generation Simulation,是由美国联邦公路局发起的一项数据采集项目,被交通界学者广泛用于车辆跟驰换道等驾驶行为研究,交通流分析,微观交通模型构建,车辆运动轨迹预测,驾驶员意图识别,自动驾驶决策规划等。所有数据均为在美国高速公路国道101上采集的实际运行轨迹数据。

2.1 数据准备

下载文件
Next_Generation_Simulation__NGSIM__Vehicle_Trajectories_and_Supporting_Data.csv,文件大小1.54GB,共有数据1185万行,每行25列。数据结构详情请见NGSIM数据集

2.2 建表

MySQL

CREATE TABLE NGSIM ( ID								 INTEGER NOT NULL,
                     Vehicle_ID				 INTEGER NOT NULL,
                     Frame_ID					 INTEGER NOT NULL,
                     Total_Frames			 INTEGER NOT NULL,
                     Global_Time			 BIGINT NOT NULL,
                     Local_X					 DECIMAL(10,3) NOT NULL,
                     Local_Y					 DECIMAL(10,3) NOT NULL,
                     Global_X					 DECIMAL(15,3) NOT NULL,
                     Global_Y					 DECIMAL(15,3) NOT NULL,
                     v_length					 DECIMAL(10,3) NOT NULL,
                     v_Width					 DECIMAL(10,3) NOT NULL,
                     v_Class					 INTEGER NOT NULL,
                     v_Vel						 DECIMAL(10,3) NOT NULL,
                     v_Acc						 DECIMAL(10,3) NOT NULL,
                     Lane_ID					 INTEGER NOT NULL,
                     O_Zone						 CHAR(10),
                     D_Zone						 CHAR(10),
                     Int_ID						 CHAR(10),
                     Section_ID				 CHAR(10),
                     Direction				 CHAR(10),
                     Movement					 CHAR(10),
                     Preceding				 INTEGER NOT NULL,
                     Following				 INTEGER NOT NULL,
                     Space_Headway		 DECIMAL(10,3) NOT NULL,
                     Time_Headway			 DECIMAL(10,3) NOT NULL,
                     Location					 CHAR(10) NOT NULL,
                     PRIMARY KEY(ID));

MongoDB

db.createCollection("NGSIM")

Lindorm

# lindorm-cli
CREATE TABLE NGSIM ( ID								 INTEGER NOT NULL,
                     Vehicle_ID				 INTEGER NOT NULL,
                     Frame_ID					 INTEGER NOT NULL,
                     Total_Frames			 INTEGER NOT NULL,
                     Global_Time			 BIGINT NOT NULL,
                     Local_X					 DECIMAL(10,3) NOT NULL,
                     Local_Y					 DECIMAL(10,3) NOT NULL,
                     Global_X					 DECIMAL(15,3) NOT NULL,
                     Global_Y					 DECIMAL(15,3) NOT NULL,
                     v_length					 DECIMAL(10,3) NOT NULL,
                     v_Width					 DECIMAL(10,3) NOT NULL,
                     v_Class					 INTEGER NOT NULL,
                     v_Vel						 DECIMAL(10,3) NOT NULL,
                     v_Acc						 DECIMAL(10,3) NOT NULL,
                     Lane_ID					 INTEGER NOT NULL,
                     O_Zone						 CHAR(10),
                     D_Zone						 CHAR(10),
                     Int_ID						 CHAR(10),
                     Section_ID				 CHAR(10),
                     Direction				 CHAR(10),
                     Movement					 CHAR(10),
                     Preceding				 INTEGER NOT NULL,
                     Following				 INTEGER NOT NULL,
                     Space_Headway		 DECIMAL(10,3) NOT NULL,
                     Time_Headway			 DECIMAL(10,3) NOT NULL,
                     Location					 CHAR(10) NOT NULL,
                     PRIMARY KEY(ID)) ;

Hbase

create 'NGSIM', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}

2.3 压缩效果对比

数据库

Lindorm(默认压缩)

Lindorm

(开启字典压缩)

HBase

MySQL

MongoDB

(默认snappy)

MongoDB

(zstd)

表大小

995 MB

818 MB

1.72 GB

2.51 GB

1.88 GB

1.50 GB


3 日志场景

使用Web服务器访问日志数据集:Zaker, Farzin, 2019, "Online Shopping Store - Web Server Logs",
https://doi.org/10.7910/DVN/3QBYB5, Harvard Dataverse, V1

3.1 数据准备

在日志数据集网页上点击下载日志文件access.log,文件大小3.51GB,共有数据1036万行,一条日志示例如下:

54.36.149.41 - - [22/Jan/2019:03:56:14 +0330] "GET /filter/27|13%20%D9%85%DA%AF%D8%A7%D9%BE%DB%8C%DA%A9%D8%B3%D9%84,27|%DA%A9%D9%85%D8%AA%D8%B1%20%D8%A7%D8%B2%205%20%D9%85%DA%AF%D8%A7%D9%BE%DB%8C%DA%A9%D8%B3%D9%84,p53 HTTP/1.1" 200 30577 "-" "Mozilla/5.0 (compatible; AhrefsBot/6.1; +http://ahrefs.com/robot/)" "-"

3.2 建表

MySQL

CREATE TABLE ACCESS_LOG  ( ID        INTEGER NOT NULL,
                           CONTENT   VARCHAR(10000),
                           PRIMARY KEY(ID));

MongoDB

db.createCollection("ACCESS_LOG")

Lindorm

# lindorm-cli
CREATE TABLE ACCESS_LOG  ( ID        INTEGER NOT NULL,
                           CONTENT   VARCHAR(10000),
                           PRIMARY KEY(ID));

Hbase

create 'ACCESS_LOG', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}

3.3 压缩效果对比

数据库

Lindorm

Lindorm

(开启字典压缩)

HBase

MySQL

MongoDB

(默认snappy)

MongoDB

(zstd)

表大小

646 MB

387 MB

737 MB

3.99 GB

1.17 GB

893 MB


4 用户行为

使用来自阿里云天池的数据集:Shop Info and User Behavior data from IJCAI-15

4.1 数据准备

在用户行为数据集网页上点击下载data_format1.zip,选用里面的user_log_format1.csv,文件大小1.91 GB,共有数据5492万行。文件结构示例如下:

4.2 建表

MySQL

CREATE TABLE USER_LOG  ( ID            INTEGER NOT NULL,
                         USER_ID       INTEGER NOT NULL,
                         ITEM_ID       INTEGER NOT NULL,
                         CAT_ID        INTEGER NOT NULL,
                         SELLER_ID     INTEGER NOT NULL,
                         BRAND_ID      INTEGER,
                         TIME_STAMP    CHAR(4) NOT NULL,
                         ACTION_TYPE   CHAR(1) NOT NULL,
                         PRIMARY KEY(ID));

MongoDB

db.createCollection("USER_LOG")

Lindorm

# lindorm-cli
CREATE TABLE USER_LOG  ( ID            INTEGER NOT NULL,
                         USER_ID       INTEGER NOT NULL,
                         ITEM_ID       INTEGER NOT NULL,
                         CAT_ID        INTEGER NOT NULL,
                         SELLER_ID     INTEGER NOT NULL,
                         BRAND_ID      INTEGER,
                         TIME_STAMP    CHAR(4) NOT NULL,
                         ACTION_TYPE   CHAR(1) NOT NULL,
                         PRIMARY KEY(ID));

Hbase

create 'USER_LOG', {NAME => 'f', DATA_BLOCK_ENCODING => 'DIFF', COMPRESSION => 'SNAPPY', BLOCKSIZE => '32768}

4.3 压缩效果对比

数据库

Lindorm

Lindorm

(开启字典压缩)

HBase

MySQL

MongoDB

(默认snappy)

MongoDB

(zstd)

表大小

805 MB

721 MB

1.48 GB

2.90 GB

3.33 GB

2.74 GB


5 总结

通过对比我们可以看到,无论是存储订单、车辆轨迹数据、日志数据还是用户行为数据,即使不开启字典压缩,相对于其他开源数据库,Lindorm的压缩比有明显优势。在开启字典压缩之后,Lindorm的压缩效果更是效果拔群,基本上是开源HBase的1到2倍,MongoDB的2到4倍,MySQL的3到10倍!由此可见,在使用Lindorm后,单单通过压缩优化,从存储成本来讲,就能节省数倍投入,同时Lindorm还具备数据冷热分离、纠删码、异构混合副本等多种降本技术。因此,Lindorm“存得起,看得见”的理念,并不是仅停留在纸面,而是在实际场景中,确实能给大家带来极致的低成本体验。

云原生多模数据库Lindorm_多模数据库_工业物联网_数据库-阿里云

相关推荐

2023年最新微信小程序抓包教程(微信小程序 抓包)

声明:本公众号大部分文章来自作者日常学习笔记,部分文章经作者授权及其他公众号白名单转载。未经授权严禁转载。如需转载,请联系开百。请不要利用文章中的相关技术从事非法测试。由此产生的任何不良后果与文...

测试人员必看的软件测试面试文档(软件测试面试怎么说)

前言又到了毕业季,我们将会迎来许多需要面试的小伙伴,在这里呢笔者给从事软件测试的小伙伴准备了一份顶级的面试文档。1、什么是bug?bug由哪些字段(要素)组成?1)将在电脑系统或程序中,隐藏着的...

复活,视频号一键下载,有手就会,长期更新(2023-12-21)

视频号下载的话题,也算是流量密码了。但也是比较麻烦的问题,频频失效不说,使用方法也难以入手。今天,奶酪就来讲讲视频号下载的新方案,更关键的是,它们有手就会有用,最后一个方法万能。实测2023-12-...

新款HTTP代理抓包工具Proxyman(界面美观、功能强大)

不论是普通的前后端开发人员,还是做爬虫、逆向的爬虫工程师和安全逆向工程,必不可少会使用的一种工具就是HTTP抓包工具。说到抓包工具,脱口而出的肯定是浏览器F12开发者调试界面、Charles(青花瓷)...

使用Charles工具对手机进行HTTPS抓包

本次用到的工具:Charles、雷电模拟器。比较常用的抓包工具有fiddler和Charles,今天讲Charles如何对手机端的HTTS包进行抓包。fiddler抓包工具不做讲解,网上有很多fidd...

苹果手机下载 TikTok 旧版本安装包教程

目前苹果手机能在国内免拔卡使用的TikTok版本只有21.1.0版本,而AppStore是高于21.1.0版本,本次教程就是解决如何下载TikTok旧版本安装包。前期准备准备美区...

【0基础学爬虫】爬虫基础之抓包工具的使用

大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到难全方位覆盖,特设【0基础学爬...

防止应用调试分析IP被扫描加固实战教程

防止应用调试分析IP被扫描加固实战教程一、概述在当今数字化时代,应用程序的安全性已成为开发者关注的焦点。特别是在应用调试过程中,保护应用的网络安全显得尤为重要。为了防止应用调试过程中IP被扫描和潜在的...

一文了解 Telerik Test Studio 测试神器

1.简介TelerikTestStudio(以下称TestStudio)是一个易于使用的自动化测试工具,可用于Web、WPF应用的界面功能测试,也可以用于API测试,以及负载和性能测试。Te...

HLS实战之Wireshark抓包分析(wireshark抓包总结)

0.引言Wireshark(前称Ethereal)是一个网络封包分析软件。网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark使用WinPCAP作为接口,直接...

信息安全之HTTPS协议详解(加密方式、证书原理、中间人攻击 )

HTTPS协议详解(加密方式、证书原理、中间人攻击)HTTPS协议的加密方式有哪些?HTTPS证书的原理是什么?如何防止中间人攻击?一:HTTPS基本介绍:1.HTTPS是什么:HTTPS也是一个...

Fiddler 怎么抓取手机APP:抖音、小程序、小红书数据接口

使用Fiddler抓取移动应用程序(APP)的数据接口需要进行以下步骤:首先,确保手机与计算机连接在同一网络下。在计算机上安装Fiddler工具,并打开它。将手机的代理设置为Fiddler代理。具体方...

python爬虫教程:教你通过 Fiddler 进行手机抓包

今天要说说怎么在我们的手机抓包有时候我们想对请求的数据或者响应的数据进行篡改怎么做呢?我们经常在用的手机手机里面的数据怎么对它抓包呢?那么...接下来就是学习python的正确姿势我们要用到一款强...

Fiddler入门教程全家桶,建议收藏

学习Fiddler工具之前,我们先了解一下Fiddler工具的特点,Fiddler能做什么?如何使用Fidder捕获数据包、修改请求、模拟客户端向服务端发送请求、实施越权的安全性测试等相关知识。本章节...

fiddler如何抓取https请求实现手机抓包(100%成功解决)

一、HTTP协议和HTTPS协议。(1)HTTPS协议=HTTP协议+SSL协议,默认端口:443(2)HTTP协议(HyperTextTransferProtocol):超文本传输协议。默认...