百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

介绍一下Web框架之fastapi

liuian 2024-12-03 16:32 35 浏览

Web框架在最近几年也发生了很大的变化,从大而全,转向现在专注于后端接口服务。例如PHP的codeigniter(我只用过这一点),比如Python的django框架,都是基于MVC的Web框架,一个框架就可以完全解决前后端的问题。在基于javascript语言的前端大放异彩之后,后端Web框架已经让出了V(视图),把注意力集中在做MC的工作上,当然前端可以干MC的工作,但先从后端开发同学的工作上来。

Python语言下面的Web框架非常的多。

从大而全的Django。

小而且美的Flask。

很早就支持异步的Tornado。

性能更进一步的异步框架sanic。

以上几款Web框架我多少都有使用过,我一度觉得sanic是pythonWeb框架的未来,支持异步,性能好,类flask的语法,代码简单,没想到被fastapi截胡了,fastapi在github的上星速度非常快。它在如何把后端api做好的这件事情上,做的比sanic更全面,更彻底。

个觉得fastapi在以下几个方面做得很优秀。

性能

先做个简单的性能对比:

flask

# flask==2.0.1
from flask import Flask
from flask import jsonify

app = Flask(__name__)


@app.route("/")
def hello_world():
    return jsonify({"hello": "world"})
1234567891011复制代码类型:[javascript]

fastapi

# fastapi==0.65.1
from fastapi import FastAPI

app = FastAPI()


@app.get("/")
def read_root():
    return {"Hello": "World"}
12345678910复制代码类型:[javascript]

虽然两个框架都支持异步(flask2.0支持异步),但我们使用的都是同步代码。

JMeter配置:并发(500)*循环(100)*启动时间(1s)=总请求数(50000)

结果flaskfastapigin运行时长67s28s5s最大值37197ms641ms270ms平均值582ms266ms40ms吞吐量751.s/sec1798.3/sec9817.4/sec

虽然是简单的对比,fastapi在各项性能指标,都有非常明显的性能优势。

api文档

fastapi直接支持OpenAPI(前身是Swagger)和redoc两种文档格式。

# main.py
from typing import Optional

from fastapi import FastAPI

app = FastAPI()


@app.get("/")
def read_root():
    return {"Hello": "World"}


@app.get("/items/{item_id}")
def read_item(item_id: int, q: Optional[str] = None):
    return {"item_id": item_id, "q": q}
1234567891011121314151617复制代码类型:[javascript]

启动服务:

> uvicorn main:app --reload
INFO:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO:     Started reloader process [19224] using statreload
INFO:     Started server process [23320]
INFO:     Waiting for application startup.
INFO:     Application startup complete.123456复制代码类型:[javascript]

访问:http://127.0.0.1:8000/docs

访问:http://127.0.0.1:8000/redoc

对于开发来说,简直不要太爽了,代码即文档,压根不用写接口文档。试问:还是谁?

类型检查

我们知道python是弱类型的语言,直到python3.5才加入类型系统。而我们在做接口参数校验的时候,必定要写大量代码验证参数是否为空,类型是否正确。

flask

import json
from flask import Flask
from flask import jsonify
from flask import request

app = Flask(__name__)

@app.route('/items/<int:item_id>', methods=['GET', 'POST', "PUT", "DELETE"])
def update_item(item_id):
    if request.method == "PUT":
        try:
            data = json.loads(request.get_data())
        except json.decoder.JSONDecodeError:
            return jsonify({"code":10101, "msg": "format error"})
        try:
            name = data["name"]
            price = data["price"]
            is_offer = data["is_offer"]
        except KeyError:
            return jsonify({"code": 10102, "msg": "key null"})

        if not isinstance(name, str):
            return jsonify({"code": 10103, "msg": "name not is str"})

        if not isinstance(price, float):
            return jsonify({"code": 10104, "msg": "price not is float"})

        if not isinstance(is_offer, bool):
            return jsonify({"code": 10105, "msg": "is_offer not is bool"})

        return jsonify({"item_name": name, "item_id": item_id})
1234567891011121314151617181920212223242526272829303132复制代码类型:[javascript]

在flask中为了验证参数是否为空,以及参数的类型,必须要写大量的异常和类型判断的代码。

fastapi

from typing import Optional
from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    price: float
    is_offer: Optional[bool] = None


@app.put("/items/{item_id}")
def update_item(item_id: int, item: Item):
    return {"item_name": item.name, "item_id": item_id}
1234567891011121314151617复制代码类型:[javascript]

fastapi通过pydantic检查参数类型,有一点像go的结构体,简直不要太简单。

总结

fastapi凭借上面几个优点,真的非常适合做后端API开发的工作,不管是从性能,还是开发效率上面优势非常明显,受到大家的追捧也是必然的。

相关推荐

eino v0.4.5版本深度解析:接口类型处理优化与错误机制全面升级

近日,eino框架发布了v0.4.5版本,该版本在错误处理、类型安全、流处理机制以及代理配置注释等方面进行了多项优化与修复。本次更新共包含6个提交,涉及10个文件的修改,由2位贡献者共同完成。本文将详...

SpringBoot异常处理_springboot异常注解

在SpringBoot中,异常处理是构建健壮、可维护Web应用的关键部分。良好的异常处理机制可以统一返回格式、提升用户体验、便于调试和监控。以下是SpringBoot中处理异常的完整指...

Jenkins运维之路(Jenkins流水线改造Day02-1-容器项目)

这回对线上容器服务器的流水线进行了一定的改造来满足目前线上的需求,还是会将所有的自动化脚本都放置到代码库中统一管理,我感觉一章不一定写的完,所以先给标题加了个-1,话不多说开干1.本次流水线的流程设计...

告别宕机!零基础搭建服务器监控告警系统!小白也能学会!

前言本文将带你从零开始,一步步搭建一个完整的服务器指标监控与邮件告警系统,使用的技术栈均为业界主流、稳定可靠的开源工具:Prometheus:云原生时代的监控王者,擅长指标采集与告警规则定义Node_...

httprunner实战接口测试笔记,拿走不谢

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试01开始安装跟创建项目pipinstallhttprunne...

基于JMeter的性能压测平台实现_jmeter压测方案

这篇文章已经是两年前写的,短短两年时间,JMeter开源应用技术的发展已经是翻天覆地,最初由github开源项目zyanycall/stressTestPlatform形成的这款测试工具也开始慢...

12K+ Star!新一代的开源持续测试工具!

大家好,我是Java陈序员。在企业软件研发的持续交付流程中,测试环节往往是影响效率的关键瓶颈,用例管理混乱、接口调试复杂、团队协作不畅、与DevOps流程脱节等问题都能影响软件交付。今天,给大家...

Spring Boot3 中分库分表之后如何合并查询

在当今互联网应用飞速发展的时代,数据量呈爆发式增长。对于互联网软件开发人员而言,如何高效管理和查询海量数据成为了一项关键挑战。分库分表技术应运而生,它能有效缓解单库单表数据量过大带来的性能瓶颈。而在...

离线在docker镜像方式部署ragflow0.17.2

经常项目上会出现不能连外网的情况,要怎么使用ragflow镜像部署呢,这里提供详细的步骤。1、下载基础镜像根据docker-compose-base.yml及docker-compose.yml中的i...

看,教你手写一个最简单的SpringBoot Starter

何为Starter?想必大家都使用过SpringBoot,在SpringBoot项目中,使用最多的无非就是各种各样的Starter了。那何为Starter呢?你可以理解为一个可拔插式...

《群星stellaris》军事基地跳出怎么办?解决方法一览

《群星stellaris》军事基地跳出情况有些小伙伴出现过这种情况,究竟该怎么解决呢?玩家“gmjdadk”分享的自己的解决方法,看看能不能解决。我用英文原版、德语、法语和俄语四个版本对比了一下,结果...

数据开发工具dbt手拉手教程-03.定义数据源模型

本章节介绍在dbt项目中,如何定义数据源模型。定义并引入数据源通过Extract和Load方式加载到仓库中的数据,可以使用dbt中的sources组件进行定义和描述。通过在dbt中将这些数据集(表)声...

docker compose 常用命令手册_docker-compose init

以下是DockerCompose常用命令手册,按生命周期管理、服务运维、构建配置、扩缩容、调试工具分类,附带参数解析、示例和关键说明,覆盖多容器编排核心场景:一、生命周期管理(核心命令...

RagFlow与DeepSeek R1本地知识库搭建详细步骤及代码实现

一、环境准备硬件要求独立显卡(建议NVIDIAGPU,8GB显存以上)内存16GB以上,推荐32GB(处理大规模文档时更高效)SSD硬盘(加速文档解析与检索)软件安装bash#必装组件Docker...

Docker Compose 配置更新指南_docker-compose配置

高效管理容器配置变更的最佳实践方法重启范围保留数据卷适用场景docker-composeup-d变更的服务常规配置更新--force-recreate指定/所有服务强制重建down→up流程...