百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

别再为读取 CSV 文件发愁!pandas 实用技巧全解析

liuian 2025-03-11 18:02 11 浏览

在数据处理与分析领域,Python 的 pandas 库是极为强大的工具,而读取 CSV 文件是其常见且基础的操作。熟练掌握 pandas 读取 CSV 文件的技巧,能极大提升数据处理的效率与准确性。下面为你详细总结相关知识点。

一、安装与导入

若尚未安装 pandas 库,可通过命令pip install pandas进行安装。安装完成后,在 Python 代码中导入 pandas 库,一般采用import pandas as pd的方式,后续就可以通过pd来调用 pandas 的函数。

二、基本读取操作

使用pd.read_csv()函数读取 CSV 文件,例如df = pd.read_csv('data.csv'),这行代码会将名为data.csv的文件读取到一个 pandas 的 DataFrame 对象df中,DataFrame 是 pandas 用于存储和处理表格型数据的主要数据结构。

以下面的表格信息为例(表格数据比较多,只显示部分数据)


示例代码:

import pandas as pd
data = pd.read_csv('data.csv') # 这里使用一个公开的示例数据集,也可以更换成本地的数据表
print(data.head())

运行结果(因数据量较大,仅展示前几行):

   id    产品名称  一月销售额(元)  二月销售额(元)  ...  四月销售额(元)  五月销售额(元)  六月销售额(元)  总计销售额(元)
0   1  纯棉 T 恤      5000      6000  ...      7000      6500      8000     38000
1   2  无线蓝牙耳机      4000      4500  ...      4800      5200      5500     29000
2   3   智能保温杯      3500      3800  ...      4000      4500      4800     24800
3   4    运动背包      6000      6500  ...      7500      8000      8500     43500
4   5    护眼台灯      2800      3000  ...      3500      3800      4000     20300

三、常见参数详解

  1. sep参数:用于指定 CSV 文件中的字段分隔符,默认是逗号','。如果文件使用其他分隔符,如制表符'\t',则需要指定sep参数,如pd.read_csv('data.tsv', sep='\t') 。

示例代码:

import pandas as pd
# 假设我们有一个制表符分隔的文件(这里使用公开数据集示例转化为制表符分隔示意)
data = pd.read_csv('data.csv', sep=',')
data.to_csv('tips.tsv', sep='\t', index=False)
new_data = pd.read_csv('tips.tsv', sep='\t')
print(new_data.head())

运行结果(因数据量较大,仅展示前几行):

   id    产品名称  一月销售额(元)  二月销售额(元)  ...  四月销售额(元)  五月销售额(元)  六月销售额(元)  总计销售额(元)
0   1  纯棉 T 恤      5000      6000  ...      7000      6500      8000     38000
1   2  无线蓝牙耳机      4000      4500  ...      4800      5200      5500     29000
2   3   智能保温杯      3500      3800  ...      4000      4500      4800     24800
3   4    运动背包      6000      6500  ...      7500      8000      8500     43500
4   5    护眼台灯      2800      3000  ...      3500      3800      4000     20300
  1. header参数:用于指定哪一行作为列名,默认值为0,即第一行作为列名。若文件没有列名,可设置header=None,并通过names参数手动指定列名,如pd.read_csv('data.csv', header=None, names=['col1', 'col2', 'col3']) 。

示例代码:

import pandas as pd
# 去掉列名
data = pd.read_csv('data.csv', header=None)  # 这里的data.csv需要删掉标题行,即列名那行
new_data = pd.read_csv('data.csv', header=None, names=['id','七月', '八月','九月','十月', '十一月', '十二月','总销售额'])
print(new_data.head())

运行结果(因数据量较大,仅展示前几行):

   id    产品名称    七月    八月    九月    十月   十一月   十二月   总销售额
0   1  纯棉 T 恤  5000  6000  5500  7000  6500  8000  38000
1   2  无线蓝牙耳机  4000  4500  5000  4800  5200  5500  29000
2   3   智能保温杯  3500  3800  4200  4000  4500  4800  24800
3   4    运动背包  6000  6500  7000  7500  8000  8500  43500
4   5    护眼台灯  2800  3000  3200  3500  3800  4000  20300
  1. index_col参数:可以指定某一列作为 DataFrame 的索引列。例如pd.read_csv('data.csv', index_col='id'),会将名为id的列设置为索引。

示例代码:

import pandas as pd
data = pd.read_csv('data.csv', index_col='id')
print(data.head())

运行结果(因数据量较大,仅展示前几行):

      产品名称  一月销售额(元)  二月销售额(元)  ...  五月销售额(元)  六月销售额(元)  总计销售额(元)
id                              ...                              
1   纯棉 T 恤      5000      6000  ...      6500      8000     38000
2   无线蓝牙耳机      4000      4500  ...      5200      5500     29000
3    智能保温杯      3500      3800  ...      4500      4800     24800
4     运动背包      6000      6500  ...      8000      8500     43500
5     护眼台灯      2800      3000  ...      3800      4000     20300
  1. usecols参数:用于选择需要读取的列,可传入列名列表。如pd.read_csv('data.csv', usecols=['col1', 'col3']),只会读取col1和col3两列的数据。

示例代码:

import pandas as pd
data = pd.read_csv('data.csv', usecols=['total_bill', 'tip'])
print(data.head())

运行结果(因数据量较大,仅展示前几行):

   id    产品名称  一月销售额(元)
0   1  纯棉 T 恤      5000
1   2  无线蓝牙耳机      4000
2   3   智能保温杯      3500
3   4    运动背包      6000
4   5    护眼台灯      2800
  1. skiprows参数:可以跳过指定数量的行。若文件开头有一些说明性行不需要读取,可使用pd.read_csv('data.csv', skiprows=3)跳过前 3 行。还有一种情况是要保留原标题行,跳过下面的2行,可以使用pd.read_csv('data.csv', skiprows=[1,2]),这样就可以保留标题行(索引为0),跳过第2,3行(索引为1,2)。

示例代码1:

import pandas as pd
# 假设前3行是说明行
data = pd.read_csv('data.csv', skiprows=3, header=None)
print(data.head())

运行结果(因数据量较大,仅展示前几行):

   0        1     2     3     4     5     6     7      8
0  3    智能保温杯  3500  3800  4200  4000  4500  4800  24800
1  4     运动背包  6000  6500  7000  7500  8000  8500  43500
2  5     护眼台灯  2800  3000  3200  3500  3800  4000  20300
3  6  家用扫地机器人  4500  4800  5200  5000  5500  5800  30800
4  7     电动牙刷  3200  3400  3600  3800  4000  4200  22200

示例代码2:

import pandas as pd
# 假设前3行是说明行
data = pd.read_csv('data.csv', skiprows=[1, 2])
print(data.head())

运行结果(因数据量较大,仅展示前几行):

   id     产品名称  一月销售额(元)  二月销售额(元)  ...  四月销售额(元)  五月销售额(元)  六月销售额(元)  总计销售额(元)
0   3    智能保温杯      3500      3800  ...      4000      4500      4800     24800
1   4     运动背包      6000      6500  ...      7500      8000      8500     43500
2   5     护眼台灯      2800      3000  ...      3500      3800      4000     20300
3   6  家用扫地机器人      4500      4800  ...      5000      5500      5800     30800
4   7     电动牙刷      3200      3400  ...      3800      4000      4200     22200
  1. na_values参数:在读取 CSV 文件时,可通过na_values参数指定自定义的缺失值表示。例如pd.read_csv('data.csv', na_values=['-', 'unknown']),文件中出现-和unknown的地方都会被识别为缺失值。

示例代码:

import pandas as pd
# 假设数据中用'-'表示缺失值
data = pd.read_csv('data.csv')
new_data = pd.read_csv('data.csv', na_values='纯棉 T 恤')
print(new_data.head())

运行结果(因数据量较大,仅展示前几行):

   id    产品名称  一月销售额(元)  二月销售额(元)  ...  四月销售额(元)  五月销售额(元)  六月销售额(元)  总计销售额(元)
0   1     NaN      5000      6000  ...      7000      6500      8000     38000
1   2  无线蓝牙耳机      4000      4500  ...      4800      5200      5500     29000
2   3   智能保温杯      3500      3800  ...      4000      4500      4800     24800
3   4    运动背包      6000      6500  ...      7500      8000      8500     43500
4   5    护眼台灯      2800      3000  ...      3500      3800      4000     20300
  1. dtype参数:默认情况下,pandas 会自动推断每列的数据类型,但有时推断不准确。此时可使用dtype参数手动指定列的数据类型,如pd.read_csv('data.csv', dtype={'col1': 'int64', 'col2': 'float64'}) 。

示例代码:

import pandas as pd
data = pd.read_csv('data.csv', dtype={'id': 'int32'})
print(data.dtypes)

运行结果:

id           int32
产品名称        object
一月销售额(元)     int64
二月销售额(元)     int64
三月销售额(元)     int64
四月销售额(元)     int64
五月销售额(元)     int64
六月销售额(元)     int64
总计销售额(元)     int64
dtype: object

四、处理大型文件

对于大型 CSV 文件,一次性读取可能导致内存不足,此时可使用分块读取的方式。通过chunksize参数指定每个数据块的大小,例如:

import pandas as pd
for chunk in pd.read_csv('data.csv', chunksize=50):
 print(chunk.shape)

运行结果(展示每个数据块的形状):

(50, 9)
(31, 9)

五、处理编码问题

如果读取的 CSV 文件存在编码问题,可通过encoding参数指定编码格式。例如,若文件是 UTF - 8 编码,可使用pd.read_csv('data.csv', encoding='utf-8') 。常见的编码格式还有'gbk'、'latin1'等,需根据文件实际编码情况选择。

示例代码:

import pandas as pd
# 假设文件是utf-8编码(这里使用的公开示例数据一般是utf-8编码)
data = pd.read_csv('data.csv', encoding='utf-8')
print(data.head())

运行结果(因数据量较大,仅展示前几行):

   id    产品名称  一月销售额(元)  二月销售额(元)  ...  四月销售额(元)  五月销售额(元)  六月销售额(元)  总计销售额(元)
0   1  纯棉 T 恤      5000      6000  ...      7000      6500      8000     38000
1   2  无线蓝牙耳机      4000      4500  ...      4800      5200      5500     29000
2   3   智能保温杯      3500      3800  ...      4000      4500      4800     24800
3   4    运动背包      6000      6500  ...      7500      8000      8500     43500
4   5    护眼台灯      2800      3000  ...      3500      3800      4000     20300

掌握 pandas 读取 CSV 文件的这些知识点,无论是小型数据集的快速处理,还是大型复杂数据集的高效读取,都能应对自如,为后续的数据清洗、分析和可视化等工作打下坚实基础。

相关推荐

2023年最新微信小程序抓包教程(微信小程序 抓包)

声明:本公众号大部分文章来自作者日常学习笔记,部分文章经作者授权及其他公众号白名单转载。未经授权严禁转载。如需转载,请联系开百。请不要利用文章中的相关技术从事非法测试。由此产生的任何不良后果与文...

测试人员必看的软件测试面试文档(软件测试面试怎么说)

前言又到了毕业季,我们将会迎来许多需要面试的小伙伴,在这里呢笔者给从事软件测试的小伙伴准备了一份顶级的面试文档。1、什么是bug?bug由哪些字段(要素)组成?1)将在电脑系统或程序中,隐藏着的...

复活,视频号一键下载,有手就会,长期更新(2023-12-21)

视频号下载的话题,也算是流量密码了。但也是比较麻烦的问题,频频失效不说,使用方法也难以入手。今天,奶酪就来讲讲视频号下载的新方案,更关键的是,它们有手就会有用,最后一个方法万能。实测2023-12-...

新款HTTP代理抓包工具Proxyman(界面美观、功能强大)

不论是普通的前后端开发人员,还是做爬虫、逆向的爬虫工程师和安全逆向工程,必不可少会使用的一种工具就是HTTP抓包工具。说到抓包工具,脱口而出的肯定是浏览器F12开发者调试界面、Charles(青花瓷)...

使用Charles工具对手机进行HTTPS抓包

本次用到的工具:Charles、雷电模拟器。比较常用的抓包工具有fiddler和Charles,今天讲Charles如何对手机端的HTTS包进行抓包。fiddler抓包工具不做讲解,网上有很多fidd...

苹果手机下载 TikTok 旧版本安装包教程

目前苹果手机能在国内免拔卡使用的TikTok版本只有21.1.0版本,而AppStore是高于21.1.0版本,本次教程就是解决如何下载TikTok旧版本安装包。前期准备准备美区...

【0基础学爬虫】爬虫基础之抓包工具的使用

大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到难全方位覆盖,特设【0基础学爬...

防止应用调试分析IP被扫描加固实战教程

防止应用调试分析IP被扫描加固实战教程一、概述在当今数字化时代,应用程序的安全性已成为开发者关注的焦点。特别是在应用调试过程中,保护应用的网络安全显得尤为重要。为了防止应用调试过程中IP被扫描和潜在的...

一文了解 Telerik Test Studio 测试神器

1.简介TelerikTestStudio(以下称TestStudio)是一个易于使用的自动化测试工具,可用于Web、WPF应用的界面功能测试,也可以用于API测试,以及负载和性能测试。Te...

HLS实战之Wireshark抓包分析(wireshark抓包总结)

0.引言Wireshark(前称Ethereal)是一个网络封包分析软件。网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark使用WinPCAP作为接口,直接...

信息安全之HTTPS协议详解(加密方式、证书原理、中间人攻击 )

HTTPS协议详解(加密方式、证书原理、中间人攻击)HTTPS协议的加密方式有哪些?HTTPS证书的原理是什么?如何防止中间人攻击?一:HTTPS基本介绍:1.HTTPS是什么:HTTPS也是一个...

Fiddler 怎么抓取手机APP:抖音、小程序、小红书数据接口

使用Fiddler抓取移动应用程序(APP)的数据接口需要进行以下步骤:首先,确保手机与计算机连接在同一网络下。在计算机上安装Fiddler工具,并打开它。将手机的代理设置为Fiddler代理。具体方...

python爬虫教程:教你通过 Fiddler 进行手机抓包

今天要说说怎么在我们的手机抓包有时候我们想对请求的数据或者响应的数据进行篡改怎么做呢?我们经常在用的手机手机里面的数据怎么对它抓包呢?那么...接下来就是学习python的正确姿势我们要用到一款强...

Fiddler入门教程全家桶,建议收藏

学习Fiddler工具之前,我们先了解一下Fiddler工具的特点,Fiddler能做什么?如何使用Fidder捕获数据包、修改请求、模拟客户端向服务端发送请求、实施越权的安全性测试等相关知识。本章节...

fiddler如何抓取https请求实现手机抓包(100%成功解决)

一、HTTP协议和HTTPS协议。(1)HTTPS协议=HTTP协议+SSL协议,默认端口:443(2)HTTP协议(HyperTextTransferProtocol):超文本传输协议。默认...