百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

10 种创建 DataFrame 的方式,你知道几个?

liuian 2025-03-11 18:02 25 浏览

DataFrame数据创建

本文介绍如何创建 DataFrame,也是 pandas 中最常用的数据类型,必须掌握的,后续的所有连载文章几乎都是基于DataFrame数据的操作。


导入库

pandas 和 numpy 建议通过 anaconda 安装后使用;pymysql 主要是 python 用来连接数据库,然后进行库表操作的第三方库,也需要先安装

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

import pymysql   # 安装:pip install pymysql

10种方式创建 DataFrame

下面介绍的是通过不同的方式来创建 DataFrame 数据,所有方式最终使用的函数都是:pd.DataFrame()

1、创建空 DataFrame

2、创建数值为 NaN 的 DataFrame

df0 = pd.DataFrame(
  columns=['A','B','C'], # 指定列属性
  index=[0,1,2]  # 指定行索引
) 

df0

改变数据的行索引:

df0 = pd.DataFrame(
  columns=['A','B','C'], 
  index=[1,2,3]  # 改变行索引:从1开始
)

df0

手动创建 DataFrame

将每个列字段的数据通过列表的形式列出来

df1 = pd.DataFrame({  
    "name":["小明","小红","小侯","小周","小孙"],   
    "sex":["男","女","女","男","男"],
    "age":[20,19,28,27,24],
    "class":[1,2,2,1,2]
})

df1

读取本地文件创建

pandas 可以通过读取 Excel、CSV、JSON 等文件来创建 DataFrame 数据

1、读取 CSV 文件

比如曾经爬到的一份成都美食的数据,是 CSV 格式的:

df2 = pd.read_csv("成都美食.csv")   # 括号里面填写文件的路径:本文的文件在当然目录下
df2

2、读取 Excel 文件

如果是 Excel 文件,也可以进行读取:

df3 = pd.read_excel("成都美食.xlsx")
df3.head()  # 默认显示前5行数据

3、读取 json 文件

比如本地当前目录下有一份 json 格式的数据:

通过 pandas 读取进来:

df4 = pd.read_json("information.json")
df4

4、读取 TXT 文件

本地当前目录有一个 TXT 文件,如下图:

df5 = pd.read_table("text.txt")
df5

上图中如果不指定任何参数:pandas 会将第一行数据作为列字段(不是我们想要的结果),指定参数修改后的代码:

df7 = pd.read_table(
  "text.txt",   # 文件路径
  names=["姓名","年龄","性别","省份"],   # 指定列属性
  sep=" "  # 指定分隔符:空格
)

df7

另外的一种解决方法就是:直接修改 txt 文件,在最上面加上我们想要的列字段属性:这样最上面的一行数据便会当做列字段

姓名 年龄  性别 出生地
小明  20   男  深圳
小红  19   女  广州
小孙  28   女  北京
小周  25   男  上海
小张  22   女  杭州

读取数据库文件创建

1、先安装 pymysql

本文中介绍的是通过 pymysql 库来操作数据库,然后将数据通过 pandas 读取进来,首先要先安装下 pymysql库(假装你会了):

pip install pymysql

首先看下本地数据库中一个表中的数据:读取 Student 表中的全部数据

数据真实样子如下图:

2、建立连接

connection = pymysql.connect(
    host="IP地址",
    port=端口号,
    user="用户名",
    password="密码",
    charset="字符集",
    db="库名"
)

cur = connection.cursor()   # 建立游标

# 待执行的SQL语句
sql = """   
select * from Student
"""

# 执行SQL
cur.execute(sql)

3、返回执行的结果

data = []

for i in cur.fetchall():
    data.append(i)   # 将每条结果追加到列表中

data

4、创建成 DataFrame 数据

df8 = pd.DataFrame(data,columns=["学号","姓名","出生年月","性别"])   # 指定每个列属性名称
df8

使用 python 字典创建

1、包含列表的字典创建

# 1、包含列表的字典

dic1  = {"name":["小明","小红","小孙"],  
        "age":[20,18,27],
        "sex":["男","女","男"]
       }
dic1

df9 = pd.DataFrame(dic1,index=[0,1,2])
df9

2、字典中嵌套字典进行创建

# 嵌套字典的字典

dic2 = {'数量':{'苹果':3,'梨':2,'草莓':5},
       '价格':{'苹果':10,'梨':9,'草莓':8},
        '产地':{'苹果':'陕西','梨':'山东','草莓':'广东'}
      }

dic2

# 结果
{'数量': {'苹果': 3, '梨': 2, '草莓': 5},
 '价格': {'苹果': 10, '梨': 9, '草莓': 8},
 '产地': {'苹果': '陕西', '梨': '山东', '草莓': '广东'}}

创建结果为:

python 列表创建

1、使用默认的行索引

lst = ["小明","小红","小周","小孙"]
df10 = pd.DataFrame(lst,columns=["姓名"])
df10

可以对索引进行修改:

lst = ["小明","小红","小周","小孙"]

df10 = pd.DataFrame(
  lst,
  columns=["姓名"],
  index=["a","b","c","d"]   # 修改索引
)

df10

3、列表中嵌套列表

# 嵌套列表形式

lst = [["小明","20","男"],
       ["小红","23","女"],
       ["小周","19","男"],
       ["小孙","28","男"]
      ]

df11 = pd.DataFrame(lst,columns=["姓名","年龄","性别"])
df11

python 元组创建

元组创建的方式和列表比较类似:可以是单层元组,也可以进行嵌套。

1、单层元组创建

# 单层元组

tup = ("小明","小红","小周","小孙")
df12 = pd.DataFrame(tup,columns=["姓名"])

df12

2、元组的嵌套

# 嵌套元组

tup = (("小明","20","男"),
       ("小红","23","女"),
       ("小周","19","男"),
       ("小孙","28","男")
      )

df13 = pd.DataFrame(tup,columns=["姓名","年龄","性别"])
df13

使用 Series 创建

DataFrame 是将数个 Series 按列合并而成的二维数据结构,每一列单独取出来是一个 Series ,所以我们可以直接通过Series数据进行创建。

series = {'水果':Series(['苹果','梨','草莓']),
          '数量':Series([60,50,100]),
          '价格':Series([7,5,18])
         }

df15 = pd.DataFrame(series)
df15

numpy 数组创建

1、使用 numpy 中的函数进行创建

# 1、使用numpy生成的数组

data1 = {
    "one":np.arange(4,10),  # 产生6个数据
    "two":range(100,106),
    "three":range(20,26)
} 

df16 = pd.DataFrame(
  data1,
  index=['A','B','C','D','E','F']   # 索引长度和数据长度相同
)

df16

2、直接通过 numpy 数组创建

# 2、numpy数组创建

# reshape()函数改变数组的shape值
data2 = np.array(["小明","广州",175,"小红","深圳",165,"小周","北京",170,"小孙","上海",180]).reshape(4,3)

data2

df17 = pd.DataFrame(
data2, # 传入数据
columns=["姓名","出生地","身高"], # 列属性
index=[0,1,2,3] # 行索引
)

df17

3、使用 numpy 中的随机函数

# 3、numpy中的随机函数生成

# 创建姓名、学科、学期、班级4个列表
name_list = ["小明","小红","小孙","小周","小张"]
subject_list = ["语文","数学","英文","生物","物理","地理","化学","体育"]
semester_list = ["上","下"]
class_list = [1,2,3]

# 生成40个分数:在50-100之间
score_list = np.random.randint(50,100,40).tolist()   # 50-100之间选择40个数

随机生成的 40 个分数:

通过 numpy 中的 random 模块的 choice 方法进行数据的随机生成:

df18 = pd.DataFrame({
    "name": np.random.choice(name_list,40,replace=True),   # replace=True表示抽取后放回(默认),所以存在相同值
    "subject": np.random.choice(subject_list,40),
    "semester": np.random.choice(semester_list,40),
    "class":np.random.choice(class_list,40),
    "score": score_list
})

df18

使用构建器 from_dict

pandas中有一个和字典相关的构建器:DataFrame.from_dict

它接收字典组成的字典或数组序列字典,并生成 DataFrame。除了 orient 参数默认为 columns,本构建器的操作与 DataFrame 构建器类似。把 orient 参数设置为 'index', 即可把字典的键作为行标签。

df19 = pd.DataFrame.from_dict(dict([('姓名', ['小明', '小红', '小周']), 
                                    ('身高', [178, 165, 196]),
                                    ('性别',['男','女','男']),
                                    ('出生地',['深圳','上海','北京'])                                  
                                   ])
                             )

df19

还可以通过参数指定行索引和列字段名称:

df20 = pd.DataFrame.from_dict(dict([('姓名', ['小明', '小红', '小周']), 
                                    ('身高', [178, 165, 196]),
                                    ('性别',['男','女','男']),
                                    ('出生地',['深圳','上海','北京'])                                  
                                   ]),
                              orient='index',   # 将字典的键作为行索引
                              columns=['one', 'two', 'three']  # 指定列字段名称
                             )

df20

使用构建器 from_records

pandas中还有另一个支持元组列表或结构数据类型(dtype)的多维数组的构建器:from_records

data3 = [{'身高': 173, '姓名': '张三','性别':'男'},
        {'身高': 182, '姓名': '李四','性别':'男'},
        {'身高': 165, '姓名': '王五','性别':'女'},
        {'身高': 170, '姓名': '小明','性别':'女'}]

df21 = pd.DataFrame.from_records(data3)

df21

还可以传入列表中嵌套元组的结构型数据:

data4 = [(173, '小明', '男'), 
         (182, '小红', '女'), 
         (161, '小周', '女'), 
         (170, '小强', '男')
        ]

df22 = pd.DataFrame.from_records(data4, 
                                 columns=['身高', '姓名', '性别']
                                )

df22

总结

DataFrame 是 pandas 中的二维数据结构,即数据以行和列的表格方式排列,类似于 Excel 、SQL 表,或 Series 对象构成的字典。它在 pandas 中是经常使用,本身就是多个 Series 类型数据的合并。

本文介绍了10 种不同的方式创建 DataFrame,最为常见的是通过读取文件的方式进行创建,然后对数据帧进行处理和分析。希望本文能够对读者朋友掌握数据帧 DataFrame 的创建有所帮助。

相关推荐

搭建一个20人的办公网络(适用于20多人的小型办公网络环境)

楼主有5台机上网,则需要一个8口路由器,组网方法如下:设备:1、8口路由器一台,其中8口为LAN(局域网)端口,一个WAN(广域网)端口,价格100--400元2、网线N米,这个你自己会看了:)...

笔记本电脑各种参数介绍(笔记本电脑各项参数新手普及知识)

1、CPU:这个主要取决于频率和二级缓存,频率越高、二级缓存越大,速度越快,现在的CPU有三级缓存、四级缓存等,都影响相应速度。2、内存:内存的存取速度取决于接口、颗粒数量多少与储存大小,一般来说,内...

汉字上面带拼音输入法下载(字上面带拼音的输入法是哪个)

使用手机上的拼音输入法打成汉字的方法如下:1.打开手机上的拼音输入法,在输入框中输入汉字的拼音,例如“nihao”。2.根据输入法提示的候选词,选择正确的汉字。例如,如果输入“nihao”,输...

xpsp3安装版系统下载(windowsxpsp3安装教程)

xpsp3纯净版在采用微软封装部署技术的基础上,结合作者的实际工作经验,融合了许多实用的功能。它通过一键分区、一键装系统、自动装驱动、一键设定分辨率,一键填IP,一键Ghost备份(恢复)等一系列...

没有备份的手机数据怎么恢复

手机没有备份恢复数据方法如下1、使用数据线将手机与电脑连接好,在“我的电脑”中可以看到手机的盘符。  2、将手机开启USB调试模式。在手机设置中找到开发者选项,然后点击“开启USB调试模式”。  3、...

电脑怎么激活windows11专业版

win11专业版激活方法有多种,以下提供两种常用的激活方式:方法一:使用激活密钥激活。在win11桌面上右键点击“此电脑”,选择“属性”选项。进入属性页面后,点击“更改产品密钥或升级windows”。...

华为手机助手下载官网(华为手机助手app下载专区)

华为手机助手策略调整,已不支持从应用市场下载手机助手,目前华为手机助手是需要在电脑上下载或更新手机助手到最新版本,https://consumer.huawei.com/cn/support/his...

光纤线断了怎么接(宽带光纤线断了怎么接)

宽带光纤线断了可以重接,具体操作方法如下:1、光纤连接的时候要根据束管内,同色相连,同芯相连,按顺序进行连接,由大到小。一般有三种连接方法,分别是熔接、活动连接和机械连接。2、连接的时候要开剥光缆,抛...

深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
win7旗舰版和专业版区别(win7旗舰版跟专业版)

1、功能区别:Win7旗舰版比专业版多了三个功能,分别是Bitlocker、BitlockerToGo和多语言界面; 2、用途区别:旗舰版的功能是所有版本中最全最强大的,占用的系统资源,...

万能连接钥匙(万能wifi连接钥匙下载)

1、首先打开wifi万能钥匙软件,若手机没有开启WLAN,就根据软件提示打开WLAN开关;2、打开WLAN开关后,会显示附近的WiFi,如果知道密码,可点击相应WiFi后点击‘输入密码’连接;3、若不...

雨林木风音乐叫什么(雨林木风是啥)

雨林木风的创始人是陈年鑫先生。陈年鑫先生于1999年创立了雨林木风公司,其初衷是为满足中国市场对高品质、高性能电脑的需求。在陈年鑫先生的领导下,雨林木风以技术创新、产品质量和客户服务为核心价值,不断推...

aics6序列号永久序列号(aics6破解序列号)

关于AICS6这个版本,虽然是比较久远的版本,但是在功能上也是十分全面和强大的,作为一名平面设计师的话,AICS6的现有的功能已经能够应付几乎所有的设计工作了……到底AICC2019的功能是不是...

win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
手机可以装电脑系统吗(手机可以装电脑系统吗怎么装)

答题公式1:手机可以通过数据线或无线连接的方式给电脑装系统。手机安装系统需要一定的技巧和软件支持,一般需要通过数据线或无线连接的方式与电脑连接,并下载相应的软件和系统文件进行安装。对于大部分手机用户来...