百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas最详细教程来了

liuian 2025-02-15 16:31 48 浏览

导读:在Python中,进行数据分析的一个主要工具就是Pandas。Pandas是Wes McKinney在大型对冲基金AQR公司工作时开发的,后来该工具开源了,主要由社区进行维护和更新。

Pandas具有NumPy的ndarray所不具有的很多功能,比如集成时间序列、按轴对齐数据、处理缺失数据等常用功能。Pandas最初是针对金融分析而开发的,所以很适合用于量化投资。

作者:赵志强 刘志伟

来源:华章科技

在使用Pandas之前,需要导入Pandas包。惯例是将pandas简写为pd,命令如下:

import?pandas?as?pd

Pandas包含两个主要的数据结构:SeriesDataFrame。其中最常用的是DataFrame,下面我们先来学习一下DataFrame。

01 DataFrame入门

DataFrame是一个表格型的数据结构。每列都可以是不同的数据类型(数值、字符串、布尔值等)。

DataFrame既有行索引也有列索引,这两种索引在DataFrame的实现上,本质上是一样的。但在使用的时候,往往是将列索引作为区分不同数据的标签。DataFrame的数据结构与SQL数据表或者Excel工作表的结构非常类似,可以很方便地互相转换。

下面先来创建一个DataFrame,一种常用的方式是使用字典,这个字典是由等长的list或者ndarray组成的,示例代码如下:

data={'A':['x','y','z'],'B':[1000,2000,3000],'C':[10,20,30]}
df=pd.DataFrame(data,index=['a','b','c'])
df

运行结果如图3-2所示。

我们可以看到,DataFrame主要由如下三个部分组成。

  • 数据,位于表格正中间的9个数据就是DataFrame的数据部分。
  • 索引,最左边的a、b、c是索引,代表每一行数据的标识。这里的索引是显式指定的。如果没有指定,会自动生成从0开始的数字索引。
  • 列标签,表头的A、B、C就是标签部分,代表了每一列的名称。

下文列出了DataFrame函数常用的参数。其中,“类似列表”代表类似列表的形式,比如列表、元组、ndarray等。一般来说,data、index、columns这三个参数的使用频率是最高的。

  • data:ndarray/字典/类似列表 | DataFrame数据;数据类型可以是ndarray、嵌套列表、字典等
  • index:索引/类似列表 | 使用的索引;默认值为range(n)
  • columns:索引/类似列表 | 使用的列标签;默认值为range(n)
  • dtype:dtype | 使用(强制)的数据类型;否则通过推导得出;默认值为None
  • copy:布尔值 | 从输入复制数据;默认值为False

其中data的数据类型有很多种。

下文列举了可以作为data传给DataFrame函数的数据类型

可以传给DataFrame构造器的数据:

  • 二维ndarray:可以自行指定索引和列标签
  • 嵌套列表或者元组:类似于二维ndarray
  • 数据、列表或元组组成的字典:每个序列变成一列。所有序列长度必须相同
  • 由Series组成的字典:每个Series会成为一列。如果没有指定索引,各Series的索引会被合并
  • 另一个DataFrame:该DataFrame的索引将会被沿用

前面生成了一个DataFrame,变量名为df。下面我们来查看一下df的各个属性值。

获取df数据的示例代码如下:

df.values

输出结果如下:

array([['x',?1000,?10],
???????['y',?2000,?20],
???????['z',?3000,?30]],?dtype=object)

获取df行索引的示例代码如下:

df.index

输出结果如下:

Index(['a',?'b',?'c'],?dtype='object')

获取df列索引(列标签)的示例代码如下:

df.columns

输出结果如下:

Index(['A',?'B',?'C'],?dtype='object')

可以看到,行索引和列标签都是Index数据类型。

创建的时候,如果指定了列标签,那么DataFrame的列也会按照指定的顺序进行排列,示例代码如下:

df=pd.DataFrame(data,columns=['C','B','A'],index=['a','b','c'])
df

运行结果如图3-3所示。

如果某列不存在,为其赋值,会创建一个新列。我们可以用这种方法来添加一个新的列:

df['D']=10
df

运行结果如图3-4所示。

使用del命令可以删除列,示例代码如下:

del?df['D']
df

运行结果如图3-5所示。

添加行的一种方法是先创建一个DataFrame,然后再使用append方法,代码如下:

new_df=pd.DataFrame({'A':'new','B':4000,'C':40},index=['d'])
df=df.append(new_df)
df

运行结果如图3-6所示。

或者也可以使用loc方法来添加行,示例代码如下:

df.loc['e']=['new2',5000,50]
df

运行结果如图3-7所示。

loc方法将在后面的内容中详细介绍。

索引的存在,使得Pandas在处理缺漏信息的时候非常灵活。下面的示例代码会新建一个DataFrame数据df2。

df2=pd.DataFrame([1,2,3,4,5],index=['a','b','c','d','z'],columns=['E'])
df2

运行结果如图3-8所示。

如果现在想要合并df和df2,使得df有一个新的列E,那么可以使用join方法,代码如下:

df.join(df2)

运行结果如图3-9所示。

可以看到,df只接受索引已经存在的值。由于df2中没有索引e,所以是NaN值,而且df2索引为z的值已经丢失了。为了保留df2中索引为z的值,我们可以提供一个参数,告诉Pandas如何连接。示例代码如下:

df.join(df2,how='outer')

运行结果如图3-10所示。

在上述代码中,how='outer'表示使用两个索引中所有值的并集。连接操作的其他选项还有inner(索引的交集)、left(默认值,调用方法的对象的索引值)、right(被连接对象的索引值)等。

在金融数据分析中,我们要分析的往往是时间序列数据。下面介绍一下如何基于时间序列生成DataFrame。为了创建时间序列数据,我们需要一个时间索引。这里先生成一个DatetimeIndex对象的日期序列,代码如下:

dates=pd.date_range('20160101',periods=8)
dates

输出结果如下:

DatetimeIndex(['2016-01-01',?'2016-01-02',?'2016-01-03',?'2016-01-04',
???????????????'2016-01-05',?'2016-01-06',?'2016-01-07',?'2016-01-08'],dtype='da
???????????????????tetime64[ns]',?freq='D')

可以看到,使用Pandas的date_range函数生成的是一个DatetimeIndex对象。date_range函数的参数及说明如下所示:

  • start:字符串/日期时间 | 开始日期;默认为None
  • end:字符串/日期时间 | 结束日期;默认为None
  • periods:整数/None | 如果start或者end空缺,就必须指定;从start开始,生成periods日期数据;默认为None
  • freq:dtype | 周期;默认是D,即周期为一天。也可以写成类似5H的形式,即5小时。其他的频率参数见下文
  • tz:字符串/None | 本地化索引的时区名称
  • normalize:布尔值 | 将start和end规范化为午夜;默认为False
  • name:字符串 | 生成的索引名称

date_range函数频率的参数及说明如下所示:

  • B:交易日
  • C:自定义交易日(试验中)
  • D:日历日
  • W:每周
  • M:每月底
  • SM:半个月频率(15号和月底)
  • BM:每个月份最后一个交易日
  • CBM:自定义每个交易月
  • MS:日历月初
  • SMS:月初开始的半月频率(1号,15号)
  • BMS:交易月初
  • CBMS:自定义交易月初
  • Q:季度末
  • BQ:交易季度末
  • QS:季度初
  • BQS:交易季度初
  • A:年末
  • BA:交易年度末
  • AS:年初
  • BAS:交易年度初
  • BH:交易小时
  • H:小时
  • T,min:分钟
  • S:
  • L,ms:毫秒
  • U,us:微秒
  • N:纳秒

接下来,我们再基于dates来创建DataFrame,代码如下:

df=pd.DataFrame(np.random.randn(8,4),index=dates,columns=list('ABCD'))
df

运行结果如图3-11所示。

有了df,我们就可以使用多个基于DataFrame的内建方法了,下面来看看相关的示例。

按列求总和,代码如下:

df.sum()

输出结果如下:

A????0.241727
B???-0.785350
C???-0.547433
D???-1.449231
dtype:?float64

按列求均值,代码如下:

df.mean()

输出结果如下:

A????0.030216
B???-0.098169
C???-0.068429
D???-0.181154
dtype:?float64

按列求累计总和,代码如下:

df.cumsum()

运行结果如图3-12所示。

使用describe一键生成多种统计数据,代码如下:

df.describe()

运行结果如图3-13所示。

可以根据某一列的值进行排序,代码如下:

df.sort_values('A')

运行结果如图3-14所示。

根据索引(日期)排序(这里是倒序),代码如下:

df.sort_index(ascending=False)

运行结果如图3-15所示。

选取某一列,返回的是Series对象,可以使用df.A,代码如下:

df['A']

输出结果如下:

2016-01-01???-1.142350
2016-01-02???-0.816178
2016-01-03????0.030206
2016-01-04????1.930175
2016-01-05????0.571512
2016-01-06????0.220445
2016-01-07????0.292176
2016-01-08???-0.844260
Freq:?D,?Name:?A,?dtype:?float64

使用[]选取某几行,代码如下:

df[0:5]

运行结果如图3-16所示。

根据标签(Label)选取数据,使用的是loc方法,代码如下:

df.loc[dates[0]]

输出结果如下:

A???-1.142350
B???-1.999351
C????0.772343
D???-0.851840
Name:?2016-01-01?00:00:00,?dtype:?float64

再来看两个示例代码。

df.loc[:,['A','C']]

运行结果如图3-17所示。

df.loc['20160102':'20160106',['A','C']]

运行结果如图3-18所示。

需要注意的是,如果只有一个时间点,那么返回的值是Series对象,代码如下:

df.loc['20160102',['A','C']]

输出结果如下:

A???-0.816178
C???-0.595195
Name:?2016-01-02?00:00:00,?dtype:?float64

如果想要获取DataFrame对象,需要使用如下命令:

df.loc['20160102':'20160102',['A','C']]

运行结果如图3-19所示。

上面介绍的是loc方法,是按标签(索引)来选取数据的。有时候,我们会希望按照DataFrame的绝对位置来获取数据,比如,如果想要获取第3行第2列的数据,但不想按标签(索引)获取,那么这时候就可以使用iloc方法。

根据位置选取数据,代码如下:

df.iloc[2]

输出结果如下:

A????0.030206
B????0.759953
C???-1.446549
D???-0.874364
Name:?2016-01-03?00:00:00,?dtype:?float64

再来看一个示例:

df.iloc[3:6,1:3]

运行结果如图3-20所示。

注意:对于DataFrame数据类型,可以使用[]运算符来进行选取,这也是最符合习惯的。但是,对于工业代码,推荐使用loc、iloc等方法。因为这些方法是经过优化的,拥有更好的性能。

有时,我们需要选取满足一定条件的数据。这个时候可以使用条件表达式来选取数据。这时传给df的既不是标签,也不是绝对位置,而是布尔数组(Boolean Array)。下面来看一下示例。

例如,寻找A列中值大于0的行。首先,生成一个布尔数组,代码如下:

df.A>0

输出结果如下:

2016-01-01????False
2016-01-02????False
2016-01-03?????True
2016-01-04?????True
2016-01-05?????True
2016-01-06?????True
2016-01-07?????True
2016-01-08????False
Freq:?D,?Name:?A,?dtype:?bool

可以看到,这里生成了一个Series类型的布尔数组。可以通过这个数组来选取对应的行,代码如下:

df[df.A>0]

运行结果如图3-21所示。

从结果可以看到,A列中值大于0的所有行都被选择出来了,同时也包括了BCD列。

现在我们要寻找df中所有大于0的数据,先生成一个全数组的布尔值,代码如下:

df>0

运行结果如图3-22所示。

下面来看一下使用df>0选取出来的数据效果。由图3-23可以看到,大于0的数据都能显示,其他数据显示为NaN值。

df[df>0]

运行结果如图3-23所示。

再来看一下如何改变df的值。首先我们为df添加新的一列E,代码如下:

df['E']=0
df

运行结果如图3-24所示。

使用loc改变一列值,代码如下:

df.loc[:,'E']=1
df

运行结果如图3-25所示。

使用loc改变单个值,代码如下:

df.loc['2016-01-01','E']?=?2
df

运行结果如图3-26所示。

使用loc改变一列值,代码如下:

df.loc[:,'D']?=?np.array([2]?*?len(df))
df

运行结果如图3-27所示。

可以看到,使用loc的时候,x索引和y索引都必须是标签值。对于这个例子,使用日期索引明显不方便,需要输入较长的字符串,所以使用绝对位置会更好。这里可以使用混合方法,DataFrame可以使用ix来进行混合索引。比如,行索引使用绝对位置,列索引使用标签,代码如下:

df.ix[1,'E']?=?3
df

运行结果如图3-28所示。

ix的处理方式是,对于整数,先假设为标签索引,并进行寻找;如果找不到,就作为绝对位置索引进行寻找。所以运行效率上会稍差一些,但好处是这样操作比较方便。

对于ix的用法,需要注意如下两点。

  • 假如索引本身就是整数类型,那么ix只会使用标签索引,而不会使用位置索引,即使没能在索引中找到相应的值(这个时候会报错)。
  • 如果索引既有整数类型,也有其他类型(比如字符串),那么ix对于整数会直接使用位置索引,但对于其他类型(比如字符串)则会使用标签索引。

总的来说,除非想用混合索引,否则建议只使用loc或者iloc来进行索引,这样可以避免很多问题。

02 Series

Series类似于一维数组,由一组数据以及相关的数据标签(索引)组成。示例代码如下:

import?pandas?as?pd
s=pd.Series([1,4,6,2,3])
s

Out:

0????1
1????4
2????6
3????2
4????3

在这段代码中,我们首先导入pandas并命名为pd,然后向Series函数传入一个列表,生成一个Series对象。在输出Series对象的时候,左边一列是索引,右边一列是值。由于没有指定索引,因此会自动创建0到(N-1)的整数索引。也可以通过Series的values和index属性获取其值和索引。示例代码如下:

s.values

Out:

array([1,?4,?6,?2,?3],?dtype=int64)
s.index

Out:

Int64Index([0,?1,?2,?3,?4],?dtype='int64')

当然,我们也可以对索引进行定义,代码如下:

s=pd.Series([1,2,3,4],index=['a','b','c','d'])
s

Out:

a????1
b????2
c????3
d????4

在这里,我们将索引定义为a、b、c、d。这时也可以用索引来选取Series的数据,代码如下:

s['a']

Out:

1
s[['b','c']]

Out:

b????2
c????3

对Series进行数据运算的时候也会保留索引。示例代码如下:

s[s>1]

Out:

b????2
c????3
d????4
s*3

Out:

a?????3
b?????6
c?????9
d????12

Series最重要的功能之一是在不同索引中对齐数据。示例代码如下:

s1=pd.Series([1,2,3],index=['a','b','c'])
s2=pd.Series([4,5,6],index=['b','c','d'])
s1+s2

Out:

a???NaN
b?????6
c?????8
d???NaN

Series的索引可以通过赋值的方式直接修改,示例代码如下:

s.index

Out:

Index([u'a',?u'b',?u'c',?u'd'],?dtype='object')
s.index=['w','x','y','z']
s.index

Out:

Index([u'w',?u'x',?u'y',?u'z'],?dtype='object')
s

Out:

w????1
x????2
y????3
z????4

关于作者:赵志强,金融量化与建模专家,目前在金融科技公司负责金融大数据产品工作,专注于研究Al在金融领域的落地应用。曾在由诺奖得主Robert Engle领导的上海纽约大学波动研究所研究全球金融风险,并和上交所、中金所合作完成多项科研项目。曾在摩根士丹利华鑫基金、明汯投资负责量化投资研究工作,内容包括股票多因子、期货CTA和高频交易等。

刘志伟,在中国银联云闪付事业部从事数据分析、数据挖掘等工作。对自然语言处理、文本分类、实体识别、关系抽取、传统机器学习,以及大数据技术栈均有实践经验。目前正在探索相关技术在金融场景内的落地应用,包括自动知识图谱、大规模文本信息抽取结构化、异常识别等领域,关注人工智能行业前沿技术发展。

本文摘编自《Python量化投资:技术、模型与策略》,经出版方授权发布。

推荐语:理论与实践相结合,基于Python阐述量化投资理论和策略,深入分析Python在量化投资分析中具体的应用案例。

相关推荐

驱动网卡(怎么从新驱动网卡)
驱动网卡(怎么从新驱动网卡)

网卡一般是指为电脑主机提供有线无线网络功能的适配器。而网卡驱动指的就是电脑连接识别这些网卡型号的桥梁。网卡只有打上了网卡驱动才能正常使用。并不是说所有的网卡一插到电脑上面就能进行数据传输了,他都需要里面芯片组的驱动文件才能支持他进行数据传输...

2026-01-30 00:37 liuian

win10更新助手装系统(微软win10更新助手)

1、点击首页“系统升级”的按钮,给出弹框,告诉用户需要上传IMEI码才能使用升级服务。同时给出同意和取消按钮。华为手机助手2、点击同意,则进入到“系统升级”功能华为手机助手华为手机助手3、在检测界面,...

windows11专业版密钥最新(windows11专业版激活码永久)

 Windows11专业版的正版密钥,我们是对windows的激活所必备的工具。该密钥我们可以通过微软商城或者通过计算机的硬件供应商去购买获得。获得了windows11专业版的正版密钥后,我...

手机删过的软件恢复(手机删除过的软件怎么恢复)
手机删过的软件恢复(手机删除过的软件怎么恢复)

操作步骤:1、首先,我们需要先打开手机。然后在许多图标中找到带有[文件管理]文本的图标,然后单击“文件管理”进入页面。2、进入页面后,我们将在顶部看到一行文本:手机,最新信息,文档,视频,图片,音乐,收藏,最后是我们正在寻找的[更多],单击...

2026-01-29 23:55 liuian

一键ghost手动备份系统步骤(一键ghost 备份)

  步骤1、首先把装有一键GHOST装系统的U盘插在电脑上,然后打开电脑马上按F2或DEL键入BIOS界面,然后就选择BOOT打USDHDD模式选择好,然后按F10键保存,电脑就会马上重启。  步骤...

怎么创建局域网(怎么创建局域网打游戏)

  1、购买路由器一台。进入路由器把dhcp功能打开  2、购买一台交换机。从路由器lan端口拉出一条网线查到交换机的任意一个端口上。  3、两台以上电脑。从交换机任意端口拉出网线插到电脑上(电脑设置...

精灵驱动器官方下载(精灵驱动手机版下载)

是的。驱动精灵是一款集驱动管理和硬件检测于一体的、专业级的驱动管理和维护工具。驱动精灵为用户提供驱动备份、恢复、安装、删除、在线更新等实用功能。1、全新驱动精灵2012引擎,大幅提升硬件和驱动辨识能力...

一键还原系统步骤(一键还原系统有哪些)

1、首先需要下载安装一下Windows一键还原程序,在安装程序窗口中,点击“下一步”,弹出“用户许可协议”窗口,选择“我同意该许可协议的条款”,并点击“下一步”。  2、在弹出的“准备安装”窗口中,可...

电脑加速器哪个好(电脑加速器哪款好)

我认为pp加速器最好用,飞速土豆太懒,急速酷六根本不工作。pp加速器什么网页都加速,太任劳任怨了!以上是个人观点,具体性能请自己试。ps:我家电脑性能很好。迅游加速盒子是可以加速电脑的。因为有过之...

任何u盘都可以做启动盘吗(u盘必须做成启动盘才能装系统吗)

是的,需要注意,U盘的大小要在4G以上,最好是8G以上,因为启动盘里面需要装系统,内存小的话,不能用来安装系统。内存卡或者U盘或者移动硬盘都可以用来做启动盘安装系统。普通的U盘就可以,不过最好U盘...

u盘怎么恢复文件(u盘文件恢复的方法)

开360安全卫士,点击上面的“功能大全”。点击文件恢复然后点击“数据”下的“文件恢复”功能。选择驱动接着选择需要恢复的驱动,选择接入的U盘。点击开始扫描选好就点击中间的“开始扫描”,开始扫描U盘数据。...

系统虚拟内存太低怎么办(系统虚拟内存占用过高什么原因)

1.检查系统虚拟内存使用情况,如果发现有大量的空闲内存,可以尝试释放一些不必要的进程,以释放内存空间。2.如果系统虚拟内存使用率较高,可以尝试增加系统虚拟内存的大小,以便更多的应用程序可以使用更多...

剪贴板权限设置方法(剪贴板访问权限)
剪贴板权限设置方法(剪贴板访问权限)

1、首先打开iphone手机,触碰并按住单词或图像直到显示选择选项。2、其次,然后选取“拷贝”或“剪贴板”。3、勾选需要的“权限”,最后选择开启,即可完成苹果剪贴板权限设置。仅参考1.打开苹果手机设置按钮,点击【通用】。2.点击【键盘】,再...

2026-01-29 21:37 liuian

平板系统重装大师(平板重装win系统)

如果你的平板开不了机,但可以连接上电脑,那就能好办,楼主下载安装个平板刷机王到你的个人电脑上,然后连接你的平板,平板刷机王会自动识别你的平板,平板刷机王上有你平板的我刷机包,楼主点击下载一个,下载完成...

联想官网售后服务网点(联想官网售后服务热线)

联想3c服务中心是联想旗下的官方售后,是基于互联网O2O模式开发的全新服务平台。可以为终端用户提供多品牌手机、电脑以及其他3C类产品的维修、保养和保险服务。根据客户需求层次,联想服务针对个人及家庭客户...