百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

别说你会用Pandas

liuian 2025-02-15 16:31 27 浏览

说到Python处理大数据集,可能会第一时间想到Numpy或者Pandas。

这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。但Numpy不适合做数据处理和探索,缺少一些现成的数据处理函数。

而Pandas的特点就是很适合做数据处理,比如读写、转换、连接、去重、分组聚合、时间序列、可视化等等,但Pandas的特点是效率略低,不擅长数值计算。

你可以同时使用Pandas和Numpy分工协作,做数据处理时用Pandas,涉及到运算时用Numpy,它们的数据格式互转也很方便。

目前前言,最多人使用的Python数据处理库仍然是pandas,这里重点说说它读取大数据的一般方式。

Pandas读取大数据集可以采用chunking分块读取的方式,用多少读取多少,不会太占用内存。

import pandas as pd  
  
# 设置分块大小,例如每次读取 10000 行  
chunksize = 10000  
  
# 使用 chunksize 参数分块读取 CSV 文件  
for chunk in pd.read_csv('large_file.csv', chunksize=chunksize):  
    # 在这里处理每个 chunk,例如打印每行的信息  
    print(chunk.head())  # 或者其他你需要的操作  
  
    # 如果你需要保存或进一步处理每个 chunk 的数据,可以在这里进行  
    # 例如,你可以将每个 chunk 写入不同的文件,或者对 chunk 进行某种计算并保存结果  

但使用分块读取时也要注意,不要在循环内部进行大量计算或内存密集型的操作,否则可能会消耗过多的内存或降低性能。

其次你可以考虑使用用Pandas读取数据库(如PostgreSQL、SQLite等)或外部存储(如HDFS、Parquet等),这会大大降低内存的压力。

尽管如此,Pandas读取大数据集能力也是有限的,取决于硬件的性能和内存大小,你可以尝试使用PySpark,它是Spark的python api接口。

PySpark提供了类似Pandas DataFrame的数据格式,你可以使用toPandas() 的方法,将 PySpark DataFrame 转换为 pandas DataFrame,但需要注意的是,这可能会将所有数据加载到单个节点的内存中,因此对于非常大的数据集可能不可行)。

相反,你也可以使用 createDataFrame() 方法从 pandas DataFrame 创建一个 PySpark DataFrame。

PySpark处理大数据的好处是它是一个分布式计算机系统,可以将数据和计算分布到多个节点上,能突破你的单机内存限制。

其次,PySpark采用懒执行方式,需要结果时才执行计算,其他时候不执行,这样会大大提升大数据处理的效率。

from pyspark.sql import SparkSession  
  
# 创建一个 SparkSession 对象  
spark = SparkSession.builder \  
    .appName("Big Data Processing with PySpark") \  
    .getOrCreate()  
  
# 读取 CSV 文件  
# 假设 CSV 文件名为 data.csv,并且有一个名为 'header' 的表头  
# 你需要根据你的 CSV 文件的实际情况修改这些参数  
df = spark.read.csv("path_to_your_csv_file/data.csv", header=True, inferSchema=True)  
  
# 显示数据集的前几行  
df.show(5)  
  
# 对数据进行一些转换  
# 例如,我们可以选择某些列,并对它们应用一些函数  
# 假设我们有一个名为 'salary' 的列,并且我们想要增加它的值(仅作为示例)  
df_transformed = df.withColumn("salary_increased", df["salary"] * 1.1)  
  
# 显示转换后的数据集的前几行  
df_transformed.show(5)  
  
# 将结果保存到新的 CSV 文件中  
# 注意:Spark 默认不会保存表头到 CSV,你可能需要手动处理这个问题  
df_transformed.write.csv("path_to_save_transformed_csv/transformed_data", header=True)  
  
# 停止 SparkSession  
spark.stop()

如果你不会使用PySpark,可以考虑Pandas的拓展库,比如modin、dask、polars等,它们提供了类似pandas的数据类型和函数接口,但使用多进程、分布式等方式来处理大数据集。

modin库

import modin.pandas as pd  
  
# 读取 CSV 文件  
df = pd.read_csv('path_to_your_csv_file.csv')  
  
# 显示前几行  
print(df.head())

Dask库

import dask.dataframe as dd  
  
# 读取 CSV 文件  
df = dd.read_csv('path_to_your_csv_file.csv')  
  
# 触发计算并显示前几行(注意这里使用的是 compute 方法)  
print(df.head().compute())

Polars库

import polars as pl
  
# 读取 CSV 文件  
df = pl.read_csv('path_to_your_csv_file.csv')  
  
# 显示前几行
print(df.head())

这几个库的好处是,使用成本很低,基本和pandas操作方式一样,但又能很好的处理大数据。

所以说Pandas是完全能胜任处理大数据集的,它目前的周边生态库非常丰富。

相关推荐

教你把多个视频合并成一个视频的方法

一.情况介绍当你有一个m3u8文件和一个目录,目录中有连续的视频片段,这些片段可以连成一段完整的视频。m3u8文件打开后像这样:m3u8文件,可以理解为播放列表,里面是播放视频片段的顺序。视频片段像这...

零代码编程:用kimichat合并一个文件夹下的多个文件

一个文件夹里面有很多个srt字幕文件,如何借助kimichat来自动批量合并呢?在kimichat对话框中输入提示词:你是一个Python编程专家,完成如下的编程任务:这个文件夹:D:\downloa...

Java APT_java APT 生成代码

JavaAPT(AnnotationProcessingTool)是一种在Java编译阶段处理注解的工具。APT会在编译阶段扫描源代码中的注解,并根据这些注解生成代码、资源文件或其他输出,...

Unit Runtime:一键运行 AI 生成的代码,或许将成为你的复制 + 粘贴神器

在我们构建了UnitMesh架构之后,以及对应的demo之后,便着手于实现UnitMesh架构。于是,我们就继续开始UnitRuntime,以用于直接运行AI生成的代码。PS:...

挣脱臃肿的枷锁:为什么说Vert.x是Java开发者手中的一柄利剑?

如果你是一名Java开发者,那么你的职业生涯几乎无法避开Spring。它如同一位德高望重的老国王,统治着企业级应用开发的大片疆土。SpringBoot的约定大于配置、SpringCloud的微服务...

五年后,谷歌还在全力以赴发展 Kotlin

作者|FredericLardinois译者|Sambodhi策划|Tina自2017年谷歌I/O全球开发者大会上,谷歌首次宣布将Kotlin(JetBrains开发的Ja...

kotlin和java开发哪个好,优缺点对比

Kotlin和Java都是常见的编程语言,它们有各自的优缺点。Kotlin的优点:简洁:Kotlin程序相对于Java程序更简洁,可以减少代码量。安全:Kotlin在类型系统和空值安全...

移动端架构模式全景解析:从MVC到MVVM,如何选择最佳设计方案?

掌握不同架构模式的精髓,是构建可维护、可测试且高效移动应用的关键。在移动应用开发中,选择合适的软件架构模式对项目的可维护性、可测试性和团队协作效率至关重要。随着应用复杂度的增加,一个良好的架构能够帮助...

颜值非常高的XShell替代工具Termora,不一样的使用体验!

Termora是一款面向开发者和运维人员的跨平台SSH终端与文件管理工具,支持Windows、macOS及Linux系统,通过一体化界面简化远程服务器管理流程。其核心定位是解决多平台环境下远程连接、文...

预处理的底层原理和预处理编译运行异常的解决方案

若文章对您有帮助,欢迎关注程序员小迷。助您在编程路上越走越好![Mac-10.7.1LionIntel-based]Q:预处理到底干了什么事情?A:预处理,顾名思义,预先做的处理。源代码中...

为“架构”再建个模:如何用代码描述软件架构?

在架构治理平台ArchGuard中,为了实现对架构的治理,我们需要代码+模型描述所要处理的内容和数据。所以,在ArchGuard中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个...

深度解析:Google Gemma 3n —— 移动优先的轻量多模态大模型

2025年6月,Google正式发布了Gemma3n,这是一款能够在2GB内存环境下运行的轻量级多模态大模型。它延续了Gemma家族的开源基因,同时在架构设计上大幅优化,目标是让...

比分网开发技术栈与功能详解_比分网有哪些

一、核心功能模块一个基本的比分网通常包含以下模块:首页/总览实时比分看板:滚动展示所有正在进行的比赛,包含比分、比赛时间、红黄牌等关键信息。热门赛事/焦点战:突出显示重要的、关注度高的比赛。赛事导航...

设计模式之-生成器_一键生成设计

一、【概念定义】——“分步构建复杂对象,隐藏创建细节”生成器模式(BuilderPattern):一种“分步构建型”创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建...

构建第一个 Kotlin Android 应用_kotlin简介

第一步:安装AndroidStudio(推荐IDE)AndroidStudio是官方推荐的Android开发集成开发环境(IDE),内置对Kotlin的完整支持。1.下载And...