百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

别再用Pandas处理大数据了!现在你拥有更好的选择

liuian 2025-02-15 16:31 25 浏览

全文共1584字,预计学习时长7分钟



众所周知,Pandas是最好的探索性数据分析工具之一。但它并非对于每个工作来说都是最佳选择,大数据处理就与它“气场不合”。


Pandas并不具备多处理器,并且处理较大的数据集速度很慢。笔者消耗在等待Pandas读取一堆文件或对其进行汇总计算上的时间太多太多了。最近,笔者发现了一个更好的工具可以更新数据处理管道,使这些CPU内核正常工作!


笔者使用该工具进行繁重的数据处理,例如读取包含10 G数据的多个文件,对其进行过滤并汇总。数据处理工作结束之后,再将结果保存到一个较小的适用于Pandas的CSV文件中,然后继续对Pandas进行探索性数据分析。这就方便许多啦,一起来认识认识这个新工具吧!


认识Dask


Dask提供了高级并行性的分析功能,得以拥有大规模处理数据的性能。适用于Dask的算法工具包有numpy, pandas和sklearn。


Dask是一个开源且免费的工具。它使用现有的PythonAPI和数据结构来简化在Dask支持的等效项之间的切换。它使简单的事情变得更容易,让复杂的事情变得可能。


Pandas vs Dask


来看一个实际的例子。在工作中,我们通常会得到一堆需要分析的文件。下面模拟笔者的工作日,并创建10个具有100K条目的文件(每个文件有196 MB)。


fromsklearn.datasets import make_classification
import pandas as pdfor i in range(1, 11):
    print('Generating trainset %d' % i)
    x, y =make_classification(n_samples=100_000, n_features=100)
    df = pd.DataFrame(data=x)
    df['y'] = y
    df.to_csv('trainset_%d.csv' % i,index=False)


先用Pandas读取这些文件并测算时间。Pandas不支持本地glob,因此需要循环读取文件。


%%timeimport globdf_list = []
for filename in glob.glob('trainset_*.csv'):
    df_ = pd.read_csv(filename)
    df_list.append(df_)
df = pd.concat(df_list)
df.shape


Pandas花了16秒读取文件。


CPU times: user 14.6 s, sys:1.29 s, total: 15.9 s
Wall time: 16 s


想象一下如果文件扩大100倍,Pandas可能就无能为力了,你甚至无法用Pandas读取它们。



而Dask可以处理无法读入内存的数据,它会将数据分成多个块并指定任务链。现在我们来计算一下Dask加载这些文件需要多长时间。


importdask.dataframe as dd%%time
df = dd.read_csv('trainset_*.csv')CPU times: user 154 ms, sys: 58.6 ms, total:212 ms
Wall time: 212 ms


只要154 ms! 这是怎么做到的?事实上,这个时间是不准确的。Dask延迟了执行模式。它仅在需要时才进行计算。定义执行图,Dask得以优化任务的执行,并重复该实验。此外,Dask的read_csv函数在本机使用glob。


%%timedf= dd.read_csv('trainset_*.csv').compute()CPU times: user 39.5 s, sys: 5.3 s,total: 44.8 s
Wall time: 8.21 s


计算功能强制Dask返回结果,Dask读取文件的速度是Pandas的两倍。


Pandas vs Dask CPU使用率


Dask是否用到了所提供的所有CPU核心功能?比较一下读取文件时Pandas和Dask之间的CPU使用率就知道了,看看代码是否与上面的相同。




我们可以看到,Pandas和Dask在读取文件时的多处理差异很明显。

究竟发生了什么?


Dask的数据框架由多个Pandas的数据框架组成,按索引划分。当使用Dask执行read_csv函数时,多个进程将读取一个文件,甚至能够被可视化为执行图。


exec_graph= dd.read_csv('trainset_*.csv')
exec_graph.visualize()


读取多个文件时,Dask执行速度较慢。


安装方法


要安装Dask,只需运行:


python-m pip install "dask[complete]"


Dask的缺点


既然Dask这么出色,我们能否直接用它取代Pandas呢?哪有这么简单的事儿。只有来自Pandas的某些特定功能,才能被迁移到Dask。其中一些功能很难并行化,例如排序值和在未排序的列上设置索引。


Dask也并非是万能的,用于不适合主内存的数据集是最适合它的“舞台”。Dask是建立在Pandas之上的,Pandas运行缓慢,Dask则同样运行缓慢。Dask在数据管道过程中仅仅是一个好用的工具,它不能替代其他库。



为你的工作挑选合适的工具,为你的工具寻找匹配的“舞台”,这样它才能够尽情“表演”。


留言点赞关注

我们一起分享AI学习与发展的干货

如转载,请后台留言,遵守转载规范

相关推荐

教你把多个视频合并成一个视频的方法

一.情况介绍当你有一个m3u8文件和一个目录,目录中有连续的视频片段,这些片段可以连成一段完整的视频。m3u8文件打开后像这样:m3u8文件,可以理解为播放列表,里面是播放视频片段的顺序。视频片段像这...

零代码编程:用kimichat合并一个文件夹下的多个文件

一个文件夹里面有很多个srt字幕文件,如何借助kimichat来自动批量合并呢?在kimichat对话框中输入提示词:你是一个Python编程专家,完成如下的编程任务:这个文件夹:D:\downloa...

Java APT_java APT 生成代码

JavaAPT(AnnotationProcessingTool)是一种在Java编译阶段处理注解的工具。APT会在编译阶段扫描源代码中的注解,并根据这些注解生成代码、资源文件或其他输出,...

Unit Runtime:一键运行 AI 生成的代码,或许将成为你的复制 + 粘贴神器

在我们构建了UnitMesh架构之后,以及对应的demo之后,便着手于实现UnitMesh架构。于是,我们就继续开始UnitRuntime,以用于直接运行AI生成的代码。PS:...

挣脱臃肿的枷锁:为什么说Vert.x是Java开发者手中的一柄利剑?

如果你是一名Java开发者,那么你的职业生涯几乎无法避开Spring。它如同一位德高望重的老国王,统治着企业级应用开发的大片疆土。SpringBoot的约定大于配置、SpringCloud的微服务...

五年后,谷歌还在全力以赴发展 Kotlin

作者|FredericLardinois译者|Sambodhi策划|Tina自2017年谷歌I/O全球开发者大会上,谷歌首次宣布将Kotlin(JetBrains开发的Ja...

kotlin和java开发哪个好,优缺点对比

Kotlin和Java都是常见的编程语言,它们有各自的优缺点。Kotlin的优点:简洁:Kotlin程序相对于Java程序更简洁,可以减少代码量。安全:Kotlin在类型系统和空值安全...

移动端架构模式全景解析:从MVC到MVVM,如何选择最佳设计方案?

掌握不同架构模式的精髓,是构建可维护、可测试且高效移动应用的关键。在移动应用开发中,选择合适的软件架构模式对项目的可维护性、可测试性和团队协作效率至关重要。随着应用复杂度的增加,一个良好的架构能够帮助...

颜值非常高的XShell替代工具Termora,不一样的使用体验!

Termora是一款面向开发者和运维人员的跨平台SSH终端与文件管理工具,支持Windows、macOS及Linux系统,通过一体化界面简化远程服务器管理流程。其核心定位是解决多平台环境下远程连接、文...

预处理的底层原理和预处理编译运行异常的解决方案

若文章对您有帮助,欢迎关注程序员小迷。助您在编程路上越走越好![Mac-10.7.1LionIntel-based]Q:预处理到底干了什么事情?A:预处理,顾名思义,预先做的处理。源代码中...

为“架构”再建个模:如何用代码描述软件架构?

在架构治理平台ArchGuard中,为了实现对架构的治理,我们需要代码+模型描述所要处理的内容和数据。所以,在ArchGuard中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个...

深度解析:Google Gemma 3n —— 移动优先的轻量多模态大模型

2025年6月,Google正式发布了Gemma3n,这是一款能够在2GB内存环境下运行的轻量级多模态大模型。它延续了Gemma家族的开源基因,同时在架构设计上大幅优化,目标是让...

比分网开发技术栈与功能详解_比分网有哪些

一、核心功能模块一个基本的比分网通常包含以下模块:首页/总览实时比分看板:滚动展示所有正在进行的比赛,包含比分、比赛时间、红黄牌等关键信息。热门赛事/焦点战:突出显示重要的、关注度高的比赛。赛事导航...

设计模式之-生成器_一键生成设计

一、【概念定义】——“分步构建复杂对象,隐藏创建细节”生成器模式(BuilderPattern):一种“分步构建型”创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建...

构建第一个 Kotlin Android 应用_kotlin简介

第一步:安装AndroidStudio(推荐IDE)AndroidStudio是官方推荐的Android开发集成开发环境(IDE),内置对Kotlin的完整支持。1.下载And...