百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Python 自动化处理 Yaml 文件

liuian 2025-02-09 13:14 11 浏览

1. Yaml 是什么

  • Yaml是一种简洁的非标记语言。
  • Yaml是一个可读性高,用来表达数据序列化的格式。
  • Yaml以数据为中心,使用空白,缩进,分行组织数据,从而使得表示更加简洁。
  • Yaml特别适合用来表达或编辑数据结构、各种配置文件、文件大纲等。


2. Yaml 文件规则

  • 区分大小写;
  • 注释标识为#;
  • 使用缩进表示层级关系;
  • 使用空格键缩进,而非Tab键;
  • 缩进的空格数目不固定,只需要相同层级的元素左侧对齐;
  • 文件中的字符串不需要使用引号标注,但若字符串包含有特殊字符则需用引号标注;


3. Yaml 文件数据结构

Yaml文件内容—示例1:

China:
  family:
    name: Smile_Family
    parents:
      - John
      - Jane
    children:
      - Lily
      - Frank
  address:
    province: BeiJing
    region: chaoyang
    city: BeiJing

Yaml文件内容—示例2:

China:
  family: { name: Smile_Family, parents: [John, Jane], children: [Lily, Frank] }
  address: { province: BeiJing, region: chaoyang, city: BeiJing }

从上述示例文件内容可以看到 Yaml 数据结构:

1). 对象:键值对的集合(简称 "映射或字典")

例如:family 和 address 这两个对象后面分别有对应的键值对集合。

2). 键值对用冒号 “:” 结构表示,冒号与值之间需用空格分隔

例如:

family 对象中的 key 为 name 与其对应的 value 值 Smile_Family 之间是使用空格分隔的。

address 对象中的 key 为 province 与其对应的 value 值 BeiJing 之间是使用空格分隔的。

3). 数组:一组按序排列的值(简称 "序列或列表"),数组前加有 “-” 符号,符号与值之间需用空格分隔

例如:

parents 中的 John 和 Jane

children 中的 Lily 和 Frank

4). 纯量(scalars):单个的、不可再分的值。例如:字符串、bool值、整数、浮点数、时间、日期、null等

None值可用null也可用 ~ 表示;


4. 安装与导入

python -m pip install pyyaml
import yaml


5. Yaml数据示例

5.1 Yaml 转 Python 列表

yaml文件内容如下:

-tony
-22
-tester

Python解析输出为:

['tony',22,'tester']

5.2 Yaml 转 Python 字典

这个例子输出一个字典,其中value包括所有基本类型

Yaml文件内容如下:

str: "Hello World!"
int: 110
float: 3.141
boolean: true  # or false
None: null  # 也可以用 ~ 号来表示 null
time: 2016-09-22t11:43:30.20+08:00  # ISO8601,写法百度
date: 2016-09-22  # 同样ISO8601

Python解析输出为:

{'str': 'Hello World!', 'int': 110, 'float': 3.141, 'boolean': True, 'None': None, 'time': datetime.datetime(2016, 9, 22, 3, 43, 30, 200000), 'date': datetime.date(2016, 9, 22)}

5.3 Yaml 转 Python 列表嵌套字典

Yaml文件内容如下:

- name: jack
  age: 0
  job: test
- name: tony
  age: 30

Python输出为:

[{'name': 'jack', 'age': 0, 'job': 'test'}, {'name': 'tony', 'age': 30}]

5.4 特殊字符的说明

如果字符串没有空格或特殊字符,不需要加引号,但如果其中有空格或特殊字符,则需要加引号。

这里要注意单引号和双引号的区别:

单引号中的特殊字符转到 Python 会被转义,也就是到最后是原样输出;

双引号不会被 Python 转义,到最后是输出了特殊字符;

Yaml文件内容如下:

str0: hi
str1: "Hello World"
str2: "Hello\nWorld"

Python输出:

{'str': 'hi', 'str1': 'Hello World', 'str2': 'Hello\nWorld'}


6. Python代码实现

import yaml

class TestYaml:
    def __init__(self,yamlFile):
        '''初始化yaml文件'''
        self.yamlFile=yamlFile

    def readYaml(self):
        '''读取yaml文件'''
        with open(self.yamlFile,'r',encoding="utf-8") as f:
            values=yaml.load(f,Loader=yaml.FullLoader)
            print(values)

    def writeYaml(self,dict):
        '''写yaml文件'''
        with open(self.yamlFile,'a',encoding="utf-8") as f:
            try:
                yaml.dump(data=dict,stream=f,encoding="utf-8",allow_unicode=True)
            except Exception as e:
                print(e)

    def cleanYaml(self):
        '''清空yaml文件'''
        with open(self.yamlFile,'w') as f:
            f.truncate()


if __name__ == '__main__':
    ty=TestYaml("testyaml.yaml")
    ty.readYaml()

    dict1={"jobs":{"computers":"tester"},"age":22}
    ty.writeYaml(dict1)
    ty.readYaml()

    ty.cleanYaml()
    ty.readYaml()

相关推荐

【常识】如何优化Windows 7

优化Windows7可以让这个经典系统运行更流畅,特别是在老旧硬件上。以下是经过整理的实用优化方案,分为基础优化和进阶优化两部分:一、基础优化(适合所有用户)1.关闭不必要的视觉效果右键计算机...

系统优化!Windows 11/10 必做的十个优化配置

以下是为Windows10/11用户整理的10个必做优化配置,涵盖性能提升、隐私保护和系统精简等方面,操作安全且无需第三方工具:1.禁用不必要的开机启动项操作路径:`Ctrl+S...

最好用音频剪辑的软件,使用方法?

QVE音频剪辑是一款简单实用的软件,功能丰富,可编辑全格式音频。支持音频转换、合并、淡入淡出、变速、音量调节等,无时长限制,用户可自由剪辑。剪辑后文件音质无损,支持多格式转换,便于存储与跨设备播放,满...

Vue2 开发总踩坑?这 8 个实战技巧让代码秒变丝滑

前端开发的小伙伴们,在和Vue2打交道的日子里,是不是总被各种奇奇怪怪的问题搞得头大?数据不响应、组件传值混乱、页面加载慢……别慌!今天带来8个超实用的Vue2实战技巧,每一个都能直击痛...

Motion for Vue:为Vue量身定制的强大动画库

在前端开发中,动画效果是提升用户体验的重要手段。Vue生态系统中虽然有许多动画库,但真正能做到高性能、易用且功能丰富的并不多。今天,我们要介绍的是MotionforVue(motion-v),...

CSS view():JavaScript 滚动动画的终结

前言CSSview()方法可能会标志着JavaScript在制作滚动动画方面的衰落。如何用5行CSS代码取代50多行繁琐的JavaScript,彻底改变网页动画每次和UI/U...

「大数据」 hive入门

前言最近会介入数据中台项目,所以会推出一系列的跟大数据相关的组件博客与文档。Hive这个大数据组件自从Hadoop诞生之日起,便作为Hadoop生态体系(HDFS、MR/YARN、HIVE、HBASE...

青铜时代的终结:对奖牌架构的反思

作者|AdamBellemare译者|王强策划|Tina要点运维和分析用例无法可靠地访问相关、完整和可信赖的数据。需要一种新的数据处理方法。虽然多跳架构已经存在了几十年,并且可以对...

解析IBM SQL-on-Hadoop的优化思路

对于BigSQL的优化,您需要注意以下六个方面:1.平衡的物理设计在进行集群的物理设计需要考虑数据节点的配置要一致,避免某个数据节点性能短板而影响整体性能。而对于管理节点,它虽然不保存业务数据,但作...

交易型数据湖 - Apache Iceberg、Apache Hudi和Delta Lake的比较

图片由作者提供简介构建数据湖最重要的决定之一是选择数据的存储格式,因为它可以大大影响系统的性能、可用性和兼容性。通过仔细考虑数据存储的格式,我们可以增强数据湖的功能和性能。有几种不同的选择,每一种都有...

深入解析全新 AWS S3 Tables:重塑数据湖仓架构

在AWSre:Invent2024大会中,AWS发布了AmazonS3Tables:一项专为可扩展存储和管理结构化数据而设计的解决方案,基于ApacheIceberg开放表格...

Apache DataFusion查询引擎简介

简介DataFusion是一个查询引擎,其本身不具备存储数据的能力。正因为不依赖底层存储的格式,使其成为了一个灵活可扩展的查询引擎。它原生支持了查询CSV,Parquet,Avro,Json等存储格式...

大数据Hadoop之——Flink Table API 和 SQL(单机Kafka)

一、TableAPI和FlinkSQL是什么TableAPI和SQL集成在同一套API中。这套API的核心概念是Table,用作查询的输入和输出,这套API都是批处理和...

比较前 3 名Schema管理工具

关注留言点赞,带你了解最流行的软件开发知识与最新科技行业趋势。在本文中,读者将了解三种顶级schema管理工具,如AWSGlue、ConfluentSchemaRegistry和Memph...

大数据技术之Flume

第1章概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume的优点1.可以和...