25个例子学会Pandas Groupby 操作
liuian 2025-01-13 15:30 17 浏览
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。
如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。
在本文中,我们将使用25个示例来详细介绍groupby函数的用法。这25个示例中还包含了一些不太常用但在各种任务中都能派上用场的操作。
这里使用的数据集是随机生成的,我们把它当作一个销售的数据集。
import pandas as pd
sales = pd.read_csv("sales_data.csv")
sales.head()
1、单列聚合
我们可以计算出每个店铺的平均库存数量如下:
sales.groupby("store")["stock_qty"].mean()
#输出
store
Daisy 1811.861702
Rose 1677.680000
Violet 14622.406061
Name: stock_qty, dtype: float64
2、多列聚合
在一个操作中进行多个聚合。以下是我们如何计算每个商店的平均库存数量和价格。
sales.groupby("store")[["stock_qty","price"]].mean()
3、多列多个聚合
我们还可以使用agg函数来计算多个聚合值。
sales.groupby("store")["stock_qty"].agg(["mean", "max"])
4、对聚合结果进行命名
在前面的两个示例中,聚合列表示什么还不清楚。例如,“mean”并没有告诉我们它是什么的均值。在这种情况下,我们可以对聚合的结果进行命名。
sales.groupby("store").agg(
avg_stock_qty = ("stock_qty", "mean"),
max_stock_qty = ("stock_qty", "max")
)
要聚合的列和函数名需要写在元组中。
5、多个聚合和多个函数
sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"])
6、对不同列的聚合进行命名
sales.groupby("store").agg(
avg_stock_qty = ("stock_qty", "mean"),
avg_price = ("price", "mean")
)
7、as_index参数
如果groupby操作的输出是DataFrame,可以使用as_index参数使它们成为DataFrame中的一列。
sales.groupby("store", as_index=False).agg(
avg_stock_qty = ("stock_qty", "mean"),
avg_price = ("price", "mean")
)
8、用于分组的多列
就像我们可以聚合多个列一样,我们也可以使用多个列进行分组。
sales.groupby(["store","product_group"], as_index=False).agg(
avg_sales = ("last_week_sales", "mean")
).head()
每个商店和产品的组合都会生成一个组。
9、排序输出
可以使用sort_values函数根据聚合列对输出进行排序。
sales.groupby(["store","product_group"], as_index=False).agg( avg_sales = ("last_week_sales", "mean")
).sort_values(by="avg_sales", ascending=False).head()
这些行根据平均销售值按降序排序。
10、最大的Top N
max函数返回每个组的最大值。如果我们需要n个最大的值,可以用下面的方法:
sales.groupby("store")["last_week_sales"].nlargest(2)
store
Daisy 413 1883
231 947
Rose 948 883
263 623
Violet 991 3222
339 2690
Name: last_week_sales, dtype: int64
11、最小的Top N
与最大值相似,也可以求最小值
sales.groupby("store")["last_week_sales"].nsmallest(2)
12、第n个值
除上面2个以外,还可以找到一组中的第n个值。
sales_sorted = sales.sort_values(by=["store","last_month_sales"], ascending=False, ignore_index=True)
找到每个店铺上个月销售排名第五的产品如下:
sales_sorted.groupby("store").nth(4)
输出包含每个组的第5行。由于行是根据上个月的销售值排序的,所以我们将获得上个月销售额排名第五的行。
13、第n个值,倒排序
也可以用负的第n项。例如," nth(-2) "返回从末尾开始的第二行。
sales_sorted.groupby("store").nth(-2)
14、唯一值
unique函数可用于查找每组中唯一的值。例如,可以找到每个组中唯一的产品代码如下:
sales.groupby("store", as_index=False).agg(
unique_values = ("product_code","unique")
)
15、唯一值的数量
还可以使用nunique函数找到每组中唯一值的数量。
sales.groupby("store", as_index=False).agg(
number_of_unique_values = ("product_code","nunique")
)
16、Lambda表达式
可以在agg函数中使用lambda表达式作为自定义聚合操作。
sales.groupby("store").agg(
total_sales_in_thousands = (
"last_month_sales",
lambda x: round(x.sum() / 1000, 1)
)
)
17、apply函数
使用apply函数将Lambda表达式应用到每个组。例如,我们可以计算每家店上周销售额与上个月四分之一销售额的差值的平均值,如下:
sales.groupby("store").apply(
lambda x: (x.last_week_sales - x.last_month_sales / 4).mean()
)
store
Daisy 5.094149
Rose 5.326250
Violet 8.965152
dtype: float64
18、dropna
缺省情况下,groupby函数忽略缺失值。如果用于分组的列中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。
让我们首先添加一个缺少存储值的新行。
sales.loc[1000] = [None, "PG2", 10000, 120, 64, 96, 15, 53]
然后计算带有dropna参数和不带有dropna参数的每个商店的平均价格,以查看差异。
sales.groupby("store")["price"].mean()
store
Daisy 69.327426
Rose 60.513700
Violet 67.808727
Name: price, dtype: float64
看看设置了缺失值参数的结果:
sales.groupby("store", dropna=False)["price"].mean()
store
Daisy 69.327426
Rose 60.513700
Violet 67.808727
NaN 96.000000
Name: price, dtype: float64
groupby函数的dropna参数,使用pandas版本1.1.0或更高版本。
19、求组的个数
有时需要知道生成了多少组,这可以使用ngroups。
sales.groupby(["store", "product_group"]).ngroups
18
在商店和产品组列中有18种不同值的不同组合。
20、获得一个特定分组
get_group函数可获取特定组并且返回DataFrame。
例如,我们可以获得属于存储“Daisy”和产品组“PG1”的行如下:
aisy_pg1 = sales.groupby(
["store", "product_group"]).get_group(("Daisy","PG1")
)
daisy_pg1.head()
21、rank函数
rank函数用于根据给定列中的值为行分配秩。我们可以使用rank和groupby函数分别对每个组中的行进行排序。
sales["rank"] = sales.groupby("store"["price"].rank(
ascending=False, method="dense"
)
sales.head()
22、累计操作
们可以计算出每组的累计总和。
import numpy as npdf = pd.DataFrame(
{
"date": pd.date_range(start="2022-08-01", periods=8, freq="D"),
"category": list("AAAABBBB"),
"value": np.random.randint(10, 30, size=8)
}
)
我们可以单独创建一个列,包含值列的累计总和,如下所示:
df["cum_sum"] = df.groupby("category")["value"].cumsum()
23、expanding函数
expanding函数提供展开转换。但是对于展开以后的操作还是需要一个累计函数来堆区操作。例如它与cumsum 函数一起使用,结果将与与sum函数相同。
df["cum_sum_2"] = df.groupby(
"category"
)["value"].expanding().sum().values
24、累积平均
利用展开函数和均值函数计算累积平均。
df["cum_mean"] = df.groupby(
"category"
)["value"].expanding().mean().values
25、展开后的最大值
可以使用expand和max函数记录组当前最大值。
df["current_highest"] = df.groupby(
"category"
)["value"].expanding().max().values
在Pandas中groupby函数与aggregate函数共同构成了高效的数据分析工具。在本文中所做的示例涵盖了groupby功能的大多数用例,希望对你有所帮助。
作者:Soner Y?ld?r?m
相关推荐
- Optional是个好东西,如果用错了就太可惜了
-
原文出处:https://xie.infoq.cn/article/e3d1f0f4f095397c44812a5be我们都知道,在Java8新增了一个类-Optional,主要是用来解决程...
- IDEA建议:不要在字段上使用@Autowire了!
-
在使用IDEA写Spring相关的项目的时候,在字段上使用@Autowired注解时,总是会有一个波浪线提示:Fieldinjectionisnotrecommended.纳尼?我天天用,咋...
- Spring源码|Spring实例Bean的方法
-
Spring实例Bean的方法,在AbstractAutowireCapableBeanFactory中的protectedBeanWrappercreateBeanInstance(String...
- Spring技巧:深入研究Java 14和SpringBoot
-
在本期文章中,我们将介绍Java14中的新特性及其在构建基于SpringBoot的应用程序中的应用。开始,我们需要使用Java的最新版本,也是最棒的版本,Java14,它现在还没有发布。预计将于2...
- Java开发200+个学习知识路线-史上最全(框架篇)
-
1.Spring框架深入SpringIOC容器:BeanFactory与ApplicationContextBean生命周期:实例化、属性填充、初始化、销毁依赖注入方式:构造器注入、Setter注...
- 年末将至,Java 开发者必须了解的 15 个Java 顶级开源项目
-
专注于Java领域优质技术,欢迎关注作者:SnailClimbStar的数量统计于2019-12-29。1.JavaGuideGuide哥大三开始维护的,目前算是纯Java类型项目中Sta...
- 字节跨平台框架 Lynx 开源:一个 Web 开发者的原生体验
-
最近各大厂都在开源自己的跨平台框架,前脚腾讯刚宣布计划四月开源基于Kotlin的跨平台框架「Kuikly」,后脚字节跳动旧开源了他们的跨平台框架「Lynx」,如果说Kuikly是一个面向...
- 我要狠狠的反驳“公司禁止使用Lombok”的观点
-
经常在其它各个地方在说公司禁止使用Lombok,我一直不明白为什么不让用,今天看到一篇文章列举了一下“缺点”,这里我只想狠狠地反驳,看到列举的理由我竟无言以对。原文如下:下面,结合我自己使用Lomb...
- SpringBoot Lombok使用详解:从入门到精通(注解最全)
-
一、Lombok概述与基础使用1.1Lombok是什么Lombok是一个Java库,它通过注解的方式自动生成Java代码(如getter、setter、toString等),从而减少样板代码的编写,...
- Java 8之后的那些新特性(六):记录类 Record Class
-
Java是一门面向对象的语言,而对于面向对象的语言中,一个众所周知的概念就是,对象是包含属性与行为的。比如HR系统中都会有雇员的概念,那雇员会有姓名,ID身份,性别等,这些我们称之为属性;而雇员同时肯...
- 为什么大厂要求安卓开发者掌握Kotlin和Jetpack?优雅草卓伊凡
-
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡一、Kotlin:Android开发的现代语言选择1.1Kotlin是什么?Kotlin是由...
- Kotlin这5招太绝了!码农秒变优雅艺术家!
-
Kotlin因其简洁性、空安全性和与Java的无缝互操作性而备受喜爱。虽然许多开发者熟悉协程、扩展函数和数据类等特性,但还有一些鲜为人知的特性可以让你的代码从仅仅能用变得真正优雅且异常简洁。让我们来看...
- 自行部署一款免费高颜值的IT资产管理系统-咖啡壶chemex
-
在运维时,ICT资产太多怎么办,还是用excel表格来管理?效率太低,也不好多人使用。在几个IT资产管理系统中选择比较中,最终在Snipe-IT和chemex间选择了chemex咖啡壶。Snip...
- PHP对接百度语音识别技术(php对接百度语音识别技术实验报告)
-
引言在目前的各种应用场景中,语音识别技术已经越来越常用,并且其应用场景正在不断扩大。百度提供的语音识别服务允许用户通过简单的接口调用,将语音内容转换为文本。本文将通过PHP语言集成百度的语音识别服务,...
- 知识付费系统功能全解析(知识付费项目怎么样)
-
开发知识付费系统需包含核心功能模块,确保内容变现、用户体验及运营管理需求。以下是完整功能架构:一、用户端功能注册登录:手机号/邮箱注册,第三方登录(微信、QQ)内容浏览:分类展示课程、文章、音频等付费...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)