百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas高级教程之:GroupBy用法

liuian 2025-01-13 15:30 42 浏览

简介

pandas中的DF数据类型可以像数据库表格一样进行groupby操作。通常来说groupby操作可以分为三部分:分割数据,应用变换和和合并数据。

本文将会详细讲解Pandas中的groupby操作。

分割数据

分割数据的目的是将DF分割成为一个个的group。为了进行groupby操作,在创建DF的时候需要指定相应的label:

df = pd.DataFrame(
   ...:     {
   ...:         "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
   ...:         "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
   ...:         "C": np.random.randn(8),
   ...:         "D": np.random.randn(8),
   ...:     }
   ...: )
   ...:

df
Out[61]: 
     A      B         C         D
0  foo    one -0.490565 -0.233106
1  bar    one  0.430089  1.040789
2  foo    two  0.653449 -1.155530
3  bar  three -0.610380 -0.447735
4  foo    two -0.934961  0.256358
5  bar    two -0.256263 -0.661954
6  foo    one -1.132186 -0.304330
7  foo  three  2.129757  0.445744

默认情况下,groupby的轴是x轴。可以一列group,也可以多列group:

In [8]: grouped = df.groupby("A")

In [9]: grouped = df.groupby(["A", "B"])

多index

0.24版本中,如果我们有多index,可以从中选择特定的index进行group:

In [10]: df2 = df.set_index(["A", "B"])

In [11]: grouped = df2.groupby(level=df2.index.names.difference(["B"]))

In [12]: grouped.sum()
Out[12]: 
            C         D
A                      
bar -1.591710 -1.739537
foo -0.752861 -1.402938

get_group

get_group 可以获取分组之后的数据:

In [24]: df3 = pd.DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]})

In [25]: df3.groupby(["X"]).get_group("A")
Out[25]: 
   X  Y
0  A  1
2  A  3

In [26]: df3.groupby(["X"]).get_group("B")
Out[26]: 
   X  Y
1  B  4
3  B  2

dropna

默认情况下,NaN数据会被排除在groupby之外,通过设置 dropna=False 可以允许NaN数据:

In [27]: df_list = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]

In [28]: df_dropna = pd.DataFrame(df_list, columns=["a", "b", "c"])

In [29]: df_dropna
Out[29]: 
   a    b  c
0  1  2.0  3
1  1  NaN  4
2  2  1.0  3
3  1  2.0  2
# Default ``dropna`` is set to True, which will exclude NaNs in keys
In [30]: df_dropna.groupby(by=["b"], dropna=True).sum()
Out[30]: 
     a  c
b        
1.0  2  3
2.0  2  5

# In order to allow NaN in keys, set ``dropna`` to False
In [31]: df_dropna.groupby(by=["b"], dropna=False).sum()
Out[31]: 
     a  c
b        
1.0  2  3
2.0  2  5
NaN  1  4

groups属性

groupby对象有个groups属性,它是一个key-value字典,key是用来分类的数据,value是分类对应的值。

In [34]: grouped = df.groupby(["A", "B"])

In [35]: grouped.groups
Out[35]: {('bar', 'one'): [1], ('bar', 'three'): [3], ('bar', 'two'): [5], ('foo', 'one'): [0, 6], ('foo', 'three'): [7], ('foo', 'two'): [2, 4]}

In [36]: len(grouped)
Out[36]: 6

index的层级

对于多级index对象,groupby可以指定group的index层级:

In [40]: arrays = [
   ....:     ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
   ....:     ["one", "two", "one", "two", "one", "two", "one", "two"],
   ....: ]
   ....: 

In [41]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])

In [42]: s = pd.Series(np.random.randn(8), index=index)

In [43]: s
Out[43]: 
first  second
bar    one      -0.919854
       two      -0.042379
baz    one       1.247642
       two      -0.009920
foo    one       0.290213
       two       0.495767
qux    one       0.362949
       two       1.548106
dtype: float64

group第一级:

In [44]: grouped = s.groupby(level=0)

In [45]: grouped.sum()
Out[45]: 
first
bar   -0.962232
baz    1.237723
foo    0.785980
qux    1.911055
dtype: float64

group第二级:

In [46]: s.groupby(level="second").sum()
Out[46]: 
second
one    0.980950
two    1.991575
dtype: float64

group的遍历

得到group对象之后,我们可以通过for语句来遍历group:

In [62]: grouped = df.groupby('A')

In [63]: for name, group in grouped:
   ....:     print(name)
   ....:     print(group)
   ....: 
bar
     A      B         C         D
1  bar    one  0.254161  1.511763
3  bar  three  0.215897 -0.990582
5  bar    two -0.077118  1.211526
foo
     A      B         C         D
0  foo    one -0.575247  1.346061
2  foo    two -1.143704  1.627081
4  foo    two  1.193555 -0.441652
6  foo    one -0.408530  0.268520
7  foo  three -0.862495  0.024580

如果是多字段group,group的名字是一个元组:

In [64]: for name, group in df.groupby(['A', 'B']):
   ....:     print(name)
   ....:     print(group)
   ....: 
('bar', 'one')
     A    B         C         D
1  bar  one  0.254161  1.511763
('bar', 'three')
     A      B         C         D
3  bar  three  0.215897 -0.990582
('bar', 'two')
     A    B         C         D
5  bar  two -0.077118  1.211526
('foo', 'one')
     A    B         C         D
0  foo  one -0.575247  1.346061
6  foo  one -0.408530  0.268520
('foo', 'three')
     A      B         C        D
7  foo  three -0.862495  0.02458
('foo', 'two')
     A    B         C         D
2  foo  two -1.143704  1.627081
4  foo  two  1.193555 -0.441652

聚合操作

分组之后,就可以进行聚合操作:

In [67]: grouped = df.groupby("A")

In [68]: grouped.aggregate(np.sum)
Out[68]: 
            C         D
A                      
bar  0.392940  1.732707
foo -1.796421  2.824590

In [69]: grouped = df.groupby(["A", "B"])

In [70]: grouped.aggregate(np.sum)
Out[70]: 
                  C         D
A   B                        
bar one    0.254161  1.511763
    three  0.215897 -0.990582
    two   -0.077118  1.211526
foo one   -0.983776  1.614581
    three -0.862495  0.024580
    two    0.049851  1.185429

对于多index数据来说,默认返回值也是多index的。如果想使用新的index,可以添加 as_index = False:

In [71]: grouped = df.groupby(["A", "B"], as_index=False)

In [72]: grouped.aggregate(np.sum)
Out[72]: 
     A      B         C         D
0  bar    one  0.254161  1.511763
1  bar  three  0.215897 -0.990582
2  bar    two -0.077118  1.211526
3  foo    one -0.983776  1.614581
4  foo  three -0.862495  0.024580
5  foo    two  0.049851  1.185429

In [73]: df.groupby("A", as_index=False).sum()
Out[73]: 
     A         C         D
0  bar  0.392940  1.732707
1  foo -1.796421  2.824590

上面的效果等同于reset_index

In [74]: df.groupby(["A", "B"]).sum().reset_index()

grouped.size() 计算group的大小:

In [75]: grouped.size()
Out[75]: 
     A      B  size
0  bar    one     1
1  bar  three     1
2  bar    two     1
3  foo    one     2
4  foo  three     1
5  foo    two     2

grouped.describe() 描述group的信息:

In [76]: grouped.describe()
Out[76]: 
      C                                                    ...         D                                                  
  count      mean       std       min       25%       50%  ...       std       min       25%       50%       75%       max
0   1.0  0.254161       NaN  0.254161  0.254161  0.254161  ...       NaN  1.511763  1.511763  1.511763  1.511763  1.511763
1   1.0  0.215897       NaN  0.215897  0.215897  0.215897  ...       NaN -0.990582 -0.990582 -0.990582 -0.990582 -0.990582
2   1.0 -0.077118       NaN -0.077118 -0.077118 -0.077118  ...       NaN  1.211526  1.211526  1.211526  1.211526  1.211526
3   2.0 -0.491888  0.117887 -0.575247 -0.533567 -0.491888  ...  0.761937  0.268520  0.537905  0.807291  1.076676  1.346061
4   1.0 -0.862495       NaN -0.862495 -0.862495 -0.862495  ...       NaN  0.024580  0.024580  0.024580  0.024580  0.024580
5   2.0  0.024925  1.652692 -1.143704 -0.559389  0.024925  ...  1.462816 -0.441652  0.075531  0.592714  1.109898  1.627081

[6 rows x 16 columns]

通用聚合方法

下面是通用的聚合方法:

函数

描述

mean()

平均值

sum()

求和

size()

计算size

count()

group的统计

std()

标准差

var()

方差

sem()

均值的标准误

describe()

统计信息描述

first()

第一个group值

last()

最后一个group值

nth()

第n个group值

min()

最小值

max()

最大值

同时使用多个聚合方法

可以同时指定多个聚合方法:

In [81]: grouped = df.groupby("A")

In [82]: grouped["C"].agg([np.sum, np.mean, np.std])
Out[82]: 
          sum      mean       std
A                                
bar  0.392940  0.130980  0.181231
foo -1.796421 -0.359284  0.912265

可以重命名:

In [84]: (
   ....:     grouped["C"]
   ....:     .agg([np.sum, np.mean, np.std])
   ....:     .rename(columns={"sum": "foo", "mean": "bar", "std": "baz"})
   ....: )
   ....: 
Out[84]: 
          foo       bar       baz
A                                
bar  0.392940  0.130980  0.181231
foo -1.796421 -0.359284  0.912265

NamedAgg

NamedAgg 可以对聚合进行更精准的定义,它包含 column 和aggfunc 两个定制化的字段。

In [88]: animals = pd.DataFrame(
   ....:     {
   ....:         "kind": ["cat", "dog", "cat", "dog"],
   ....:         "height": [9.1, 6.0, 9.5, 34.0],
   ....:         "weight": [7.9, 7.5, 9.9, 198.0],
   ....:     }
   ....: )
   ....: 

In [89]: animals
Out[89]: 
  kind  height  weight
0  cat     9.1     7.9
1  dog     6.0     7.5
2  cat     9.5     9.9
3  dog    34.0   198.0

In [90]: animals.groupby("kind").agg(
   ....:     min_height=pd.NamedAgg(column="height", aggfunc="min"),
   ....:     max_height=pd.NamedAgg(column="height", aggfunc="max"),
   ....:     average_weight=pd.NamedAgg(column="weight", aggfunc=np.mean),
   ....: )
   ....: 
Out[90]: 
      min_height  max_height  average_weight
kind                                        
cat          9.1         9.5            8.90
dog          6.0        34.0          102.75

或者直接使用一个元组:

In [91]: animals.groupby("kind").agg(
   ....:     min_height=("height", "min"),
   ....:     max_height=("height", "max"),
   ....:     average_weight=("weight", np.mean),
   ....: )
   ....: 
Out[91]: 
      min_height  max_height  average_weight
kind                                        
cat          9.1         9.5            8.90
dog          6.0        34.0          102.75

不同的列指定不同的聚合方法

通过给agg方法传入一个字典,可以指定不同的列使用不同的聚合:

In [95]: grouped.agg({"C": "sum", "D": "std"})
Out[95]: 
            C         D
A                      
bar  0.392940  1.366330
foo -1.796421  0.884785

转换操作

转换是将对象转换为同样大小对象的操作。在数据分析的过程中,经常需要进行数据的转换操作。

可以接lambda操作:

In [112]: ts.groupby(lambda x: x.year).transform(lambda x: x.max() - x.min())

填充na值:

In [121]: transformed = grouped.transform(lambda x: x.fillna(x.mean()))

过滤操作

filter方法可以通过lambda表达式来过滤我们不需要的数据:

In [136]: sf = pd.Series([1, 1, 2, 3, 3, 3])

In [137]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[137]: 
3    3
4    3
5    3
dtype: int64

Apply操作

有些数据可能不适合进行聚合或者转换操作,Pandas提供了一个 apply 方法,用来进行更加灵活的转换操作。

In [156]: df
Out[156]: 
     A      B         C         D
0  foo    one -0.575247  1.346061
1  bar    one  0.254161  1.511763
2  foo    two -1.143704  1.627081
3  bar  three  0.215897 -0.990582
4  foo    two  1.193555 -0.441652
5  bar    two -0.077118  1.211526
6  foo    one -0.408530  0.268520
7  foo  three -0.862495  0.024580

In [157]: grouped = df.groupby("A")

# could also just call .describe()
In [158]: grouped["C"].apply(lambda x: x.describe())
Out[158]: 
A         
bar  count    3.000000
     mean     0.130980
     std      0.181231
     min     -0.077118
     25%      0.069390
                ...   
foo  min     -1.143704
     25%     -0.862495
     50%     -0.575247
     75%     -0.408530
     max      1.193555
Name: C, Length: 16, dtype: float64

可以外接函数:

In [159]: grouped = df.groupby('A')['C']

In [160]: def f(group):
   .....:     return pd.DataFrame({'original': group,
   .....:                          'demeaned': group - group.mean()})
   .....: 

In [161]: grouped.apply(f)
Out[161]: 
   original  demeaned
0 -0.575247 -0.215962
1  0.254161  0.123181
2 -1.143704 -0.784420
3  0.215897  0.084917
4  1.193555  1.552839
5 -0.077118 -0.208098
6 -0.408530 -0.049245
7 -0.862495 -0.503211

本文已收录于 http://www.flydean.com/11-python-pandas-groupby/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

相关推荐

不用电脑怎么恢复(不用电脑怎么恢复出厂设置)

操作方法01方法一:通过设置重置电脑使用快捷键Windows+A,点击所有设置,点击更新系统-恢复,重置此电脑点开始。02选择仅保留我的文件,删除应用和设置,提示窗口会显示出将被删除的应用,点击下一步...

最强视频播放器(2020视频播放器排行榜前十名)

应该是MXPlayer。他是一款安卓版上十分强悍的视频播放器,他以解码性能强、兼容性高而闻名,并且,对视频字幕的支持更是堪称一绝,支持在线匹配,对特效字幕的支持也是非常的高的。作为一款优质的手机视频播...

三星固态驱动官网(三星固态官方软件)

三星手机序列号查询官网是http://www.samsung110.com/。手机序列号(S/N号)查询方法:设置-关于手机-状态-序列号(序号)。或通过以下方式查询:通过机器包装盒上的标贴查询用...

雨林木风u盘装机教程(雨林木风u盘装系统,步骤)

电脑系统安装步骤:1、用【u启动u盘启动盘制作工具】制作u启动盘,重启电脑等待出现开机画面按下启动快捷键,选择u盘启动进入到u启动主菜单,选取“【02】Win8PE装机维护版(新机器)”选项2、进...

无法连接到这个网络是怎么回事

有可能是网络本身有问题,需要联系运营商解决。也有可能是因为网卡驱动问题,首先鼠标右击开始按钮,然后点击设备管理器,双击网络适配器,最后查看网卡驱动有没有出现黄色的感叹号,如果有的话,右击选择更新驱动程...

刷机精灵怎么解除锁屏密码(刷机精灵怎么解除锁屏密码设置)

刷机精灵解锁手机锁屏密码方法:下载好刷机精灵。打开链接手机,之后在刷机精灵页面里能看到“实用工具”的选项。解除手机解锁图案要获取root权限,若没有获取的可以在这里点击获取root权限的选项。获取了...

联想云服务官网(联想云服务官网查找手机)

华为手机也是可以下载云服务软件安装然后使用联想账号登陆云服务的。部分云服务功能将无法使用。登录联想云服务方法:点开云服务软件,选择立即使用,即出现:手机号码登入,邮箱登入,第三方登入;手机号码登入,邮...

宏基笔记本系统重装快捷键(宏基笔记本重装系统步骤)

如果用系统u盘、光盘安装:1、需要在Bios中设置从u盘或光盘启动。2、启动电脑,dcer一般默认按Del键(有些型号F2、F12)进入Bios设置界面。F2键。宏碁笔记本重装系统按F2键,进入BIO...

windows10官网打不开(win10系统官网打不开)

你可以通过以下步骤在Windows10官网上更新操作系统:1.打开windows官网,进入“下载和工具”页面。2.单击“立即下载工具”按钮,将下载“Windows10更新助手”。3.运行“...

win7无线网卡插上没反应(win7无线网卡插上没反应怎么回事)

1、如果是路由器的问题,如果原来可以用,暂时不能用了,在有就是恢复出厂设置,从新设置就可以用了(这是在物理连接正确的前提下)。2、如果是宽带本身的问题,首先直接联接宽带网线测试,如果是宽带的问题,联系...

下载爱奇艺安装(下载爱奇艺安装包)

如果你的电脑无法安装爱奇艺,可能有以下原因,第一种原因可能是你的电脑系统版本太低,升级你的电脑操作系统,可以促进爱奇艺的下载,第二种情况是你下载的爱奇艺可能捆绑一些病毒软件,系统的杀毒软件识别有霸王软...

5000元左右的电脑配置单(5000左右的电脑配置推荐2021)

五千元至六千元价位电脑主机,如果组装机,可以配置配置很高的档次,电脑主机主板可以配置不低于十二代产品,可以设四个内存条插槽,相应的内存可以配置128GB内存条2至四根,电脑处理器也同样不低于十二代产品...

快速关机(快速关机按什么键)
快速关机(快速关机按什么键)

1、我们直接长按手机右侧的电源键,大概5秒的时间,这时候手机页面会直接显示是否关机,选择关机就可以直接关机了。2、找到手机一侧的音量“+”键,再找到电源按键,之后只需同时按住音量“+”键和电源按钮,直到手机屏幕关闭即可强制关机。3、点击【设...

2025-12-25 08:05 liuian

云电脑免登录破解版(“云电脑破解版”)

虎牙YOWA云游戏平台便是一款完全免费的产品,只要玩家在自己的账号上购买过相关的产品即可通过云游戏平台直接登陆。但云游戏平台终归只是改变玩家的游戏方式,用户最终还是要回归于游戏中,如果难以保证游戏体验...

联想家庭版win7(联想家庭版笔记本电脑)

1、开机到欢迎界面时,按Ctrl+Alt+Delete,跳出帐号窗口,输入用户名:administrator,回车。2、如果这个帐号也有密码采用开机启动时按F8选“带命令行的安全模式”。3、选“Ad...