百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

50个Pandas的奇淫技巧:一网打尽各种索引 iloc,loc,ix,iat,at…

liuian 2025-01-12 16:25 29 浏览

作者:小伍哥

来源: 小伍哥聊风控

数据处理,也是风控非常重要的一个环节,甚至说是模型成败的关键环节。因此,娴熟简洁的数据处理技巧,是提高建模效率和建模质量的必要能力。这里开个专题,总结下Pandas的使用方法,方便大家,也方便自己查阅。

这个专题叫做:【50个Pandas的奇淫技巧】,今天这个算是第一讲,后续慢慢更新。

一、Pandas索引概述

很多人在使用Pandas处理数据时,总会迷失在data[]、iloc()、loc()、ix()中,似乎记得,又似乎不记得,每到用时都需要百度,不知所以然的解决了问题,下次继续百度,记忆点基本上非常混乱。总结本文,希望能解决这个问题,通过一个简单的案例彻底搞明白这几种索引方法到底有什么区别。

日常使用中,推荐使用loc和iloc进行索引,loc是指location的意思,iloc中的 i 是指integer,这两个方法容易混淆,可以使用特殊方式来加强记忆。

iloc:基于位置,用行号、列号进行索引,i 可以看着 int,因此 iloc 只能用整数 来索引,例如data.iloc[0:2,:]

loc :基于标签,用行名、列名进行索引,数据的index经常为整数,因此 loc 的使用范围要远高于iloc,loc可以使用整数切片、名称(index,columns)索引、也可以切片和名称混合使用。例如:data.loc[0:5:,'row1':'row2']

我们简单构造一个数据集,在下面的案例中需要用到。

import pandas as pd
import numpy  as np
data = pd.DataFrame(np.arange(25).reshape(5, 5), 
                  index = ['row1', 'row2','row3','row4','row5'], 
                  columns=['col1', 'col2','col3','col4','col5'])
data 
      col1  col2  col3  col4  col5
row1     0     1     2     3     4
row2     5     6     7     8     9
row3    10    11    12    13    14
row4    15    16    17    18    19
row5    20    21    22    23    24

创建的表格数据如下:


二、直接用列名索引

取一列:data['col1'] ,即取得第一列,得到的是一个Series对象。

取多列:data[['col1','col2']] ,即取得第一列、第二列,得到的是一个DataFrame对象。

注 意:用data['row1'] 、data[0]、data[:,0]、data[0,:]、data[:,'col1':'col2'] 统统都会报错的,这类命令只能用来按列名取一列或多列

data['col1']
row1     0
row2     5
row3    10
row4    15
row5    20
data[['col1','col2']] 
      col1  col2
row1     0     1
row2     5     6
row3    10    11
row4    15    16
row5    20    21


#下面的命令直接应用都会报错,但是用loc 和 iloc 就不会报错
data['row1']
data[0]
data[:,0]
data[0,:]
data[:,'col1':'col2'] 
#TypeError: '(slice(None, None, None), 0)' is an invalid ke


三、直接用行号索引

data[0:2] 代表取得第0行和第1行,不包含最后一个。

注 意:只取一行的话,要用data[0:1],不能用data[0],data[0:2,]也会报错

data[0:2]
      col1  col2  col3  col4  col5
row1     0     1     2     3     4
row2     5     6     7     8     9


四、iloc按行号、列号索引

官方:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html

1、行索引

1)取一行 :data.iloc[0] 、data.iloc[0,:]

2)取多行 :data.iloc[[0,2]] 、data.iloc[[0,2],:]

3)取连续多行 :data.iloc[0:2] 、data.iloc[0:2,:]

2、列索引

4)取一列 :data.iloc[:,0]

5)取多列 :data.iloc[:,[0,2]]、data.iloc[:,[0,2]]

6)取连续多列 :data.iloc[:,0:2]

注 意:

取行的时候可以不提列,也可以用 ",:" 来指全列

取列的时候必须用":,"来指定全行。

可以使用一个数字来代表一个,可以使用一个列表[a,b]代表多个,也可以使用a:b代表连续多个。

data.iloc[0]
col1    0
col2    1
col3    2
col4    3
col5    4
data.iloc[:,2:4]
      col3  col4
row1     2     3
row2     7     8
row3    12    13
row4    17    18
row5    22    23
data.iloc[:,[2,4]]
      col3  col5
row1     2     4
row2     7     9
row3    12    14
row4    17    19
row5    22    24


五、loc按行名、列名索引

官方网址:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html

1、行索引

取一行:data.loc['row1'] 、data.loc['row1',:]

取多行:data.loc[['row1','row2']] 、data.loc[['row1','row2'],:]

取连续多行:data.loc['row1':'row2'] 、data.loc['row1':'row2',:]

2、列索引

取一列:data.loc[:,'col1']

取多列:data.loc[:,['row1','row2']]

取连续多列:data.loc[:,'row1':'row2']

注 意:

取行的时候可以不提列,也可以用",:"来指全列。

取列的时候必须用":,"来指定全行。

可以使用一个数字来代表一个,可以使用一个list ['a','b']代表多个,也可以使用'a':'b'代表连续多个。

data.loc[:,'col1':'col3'] 
      col1  col2  col3
row1     0     1     2
row2     5     6     7
row3    10    11    12
row4    15    16    17
row5    20    21    22
data.loc[:,['col1','col3']]
      col1  col3
row1     0     2
row2     5     7
row3    10    12
row4    15    17
row5    20    22
#当索引为整数时,可以用整数进行索引
data = pd.DataFrame(np.arange(25).reshape(5, 5), 
                  columns=['col1', 'col2','col3','col4', 'col5'])
   col1  col2  col3  col4  col5
0     0     1     2     3     4
1     5     6     7     8     9
2    10    11    12    13    14
3    15    16    17    18    19
4    20    21    22    23    24


data.loc[0:3,'col1':'col3'] 
   col1  col2  col3
0     0     1     2
1     5     6     7
2    10    11    12
3    15    16    17


六、使用iat和at

iat 和 at 只能取单个元素,iat 使用行、列索引,at 使用行、列名,但是其功能被 iloc 和 loc 包含,因此不推荐。

data.iat[1,2] 
7
data.at['row4','col4'] 
18


七、最后总结(重点!!!!)

正常情况下,推荐使用 iloc 和 loc。最核心的点记住,取行可以不提列,取列必须提行,可以用一个数字,一个list,或者一个区间来取行列。ix新版的已经弃用了,所以可以不用太关注。

相关推荐

Python生态下的微服务框架FastAPI

FastAPI是什么FastAPI是一个用于构建API的web框架,使用Python并基于标准的Python类型提示。与flask相比有什么优势高性能:得益于uvloop,可达到与...

SpringBoot:如何解决跨域问题,详细方案和示例代码

跨域问题在前端开发中经常会遇到,特别是在使用SpringBoot框架进行后端开发时。解决跨域问题的方法有很多,我将为你提供一种详细的方案,包含示例代码。首先,让我们了解一下什么是跨域问题。跨域是指在...

使用Nginx轻松搞定跨域问题_使用nginx轻松搞定跨域问题的方法

跨域问题(Cross-OriginResourceSharing,简称CORS)是由浏览器的同源策略引起的。同源策略指的是浏览器限制来自不同源(协议、域名、端口)的JavaScript对资源的...

spring boot过滤器与拦截器的区别

有小伙伴使用springboot开发多年,但是对于过滤器和拦截器的主要区别依然傻傻分不清。今天就对这两个概念做一个全面的盘点。定义与作用范围过滤器(Filter):过滤器是一种可以动态地拦截、处理和...

nginx如何配置跨域_nginx配置跨域访问

要在Nginx中配置跨域,可以使用add_header指令来添加Access-Control-Allow-*头信息,如下所示:location/api{if($reques...

解决跨域问题的8种方法,含网关、Nginx和SpringBoot~

跨域问题是浏览器为了保护用户的信息安全,实施了同源策略(Same-OriginPolicy),即只允许页面请求同源(相同协议、域名和端口)的资源,当JavaScript发起的请求跨越了同源策略,...

图解CORS_图解数学

CORS的全称是Cross-originresourcesharing,中文名称是跨域资源共享,是一种让受限资源能够被其他域名的页面访问的一种机制。下图描述了CORS机制。一、源(Orig...

CORS 幕后实际工作原理_cors的工作原理

跨域资源共享(CORS)是Web浏览器实施的一项重要安全机制,用于保护用户免受潜在恶意脚本的攻击。然而,这也是开发人员(尤其是Web开发新手)感到沮丧的常见原因。小编在此将向大家解释它存在...

群晖无法拉取Docker镜像?最稳定的方法:搭建自己的加速服务!

因为未知的原因,国内的各大DockerHub镜像服务器无法使用,导致在使用群晖时无法拉取镜像构建容器。网上大部分的镜像加速服务都是通过Cloudflare(CF)搭建的,为什么都选它呢?因为...

Sa-Token v1.42.0 发布,新增 API Key、TOTP 验证码等能力

Sa-Token是一款免费、开源的轻量级Java权限认证框架,主要解决:登录认证、权限认证、单点登录、OAuth2.0、微服务网关鉴权等一系列权限相关问题。目前最新版本v1.42.0已...

NGINX常规CORS错误解决方案_nginx配置cors

CORS错误CORS(Cross-OriginResourceSharing,跨源资源共享)是一种机制,它使用额外的HTTP头部来告诉浏览器允许一个网页运行的脚本从不同于它自身来源的服务器上请求资...

Spring Boot跨域问题终极解决方案:3种方案彻底告别CORS错误

引言"接口调不通?前端同事又双叒叕在吼跨域了!""明明Postman能通,浏览器却报OPTIONS403?""生产环境跨域配置突然失效,凌晨3点被夺命连环Ca...

SpringBoot 项目处理跨域的四种技巧

上周帮一家公司优化代码时,顺手把跨域的问题解决了,这篇文章,我们聊聊SpringBoot项目处理跨域的四种技巧。1什么是跨域我们先看下一个典型的网站的地址:同源是指:协议、域名、端口号完全相...

Spring Cloud入门看这一篇就够了_spring cloud使用教程

SpringCloud微服务架构演进单体架构垂直拆分分布式SOA面向服务架构微服务架构服务调用方式:RPC,早期的webservice,现在热门的dubbo,都是RPC的典型代表HTTP,HttpCl...

前端程序员:如何用javascript开发一款在线IDE?

前言3年前在AWSre:Invent大会上AWS宣布推出Cloud9,用于在云端编写、运行和调试代码,它可以直接运行在浏览器中,也就是传说中的WebIDE。3年后的今天随着国内云计算的发...