Pandas50个高级操作,必读!
liuian 2025-01-12 16:25 34 浏览
在数据分析和数据建模的过程中需要对数据进行清洗和整理等工作,有时需要对数据增删字段。下面为大家介绍Pandas对数据的复杂查询、数据类型转换、数据排序、数据的修改、数据迭代以及函数的使用。
https://zhuanlan.zhihu.com/p/568250201
01、复杂查询
实际业务需求往往需要按照一定的条件甚至复杂的组合条件来查询数据,接下来为大家介绍如何发挥Pandas数据筛选的无限可能,随心所欲地取用数据。
1、逻辑运算
# Q1成绩大于36
df.Q1> 36
# Q1成绩不小于60分,并且是C组成员
~(df.Q1< 60) & (df['team'] == 'C')
2、逻辑筛选数据
切片([ ])、.loc[ ]和.iloc[ ]均支持上文所介绍的逻辑表达式。
以下是切片([ ])的逻辑筛选示例:
df[df['Q1']== 8] # Q1等于8
df[~(df['Q1']== 8)] # 不等于8
df[df.name== 'Ben'] # 姓名为Ben
df[df.Q1> df.Q2]
以下是.loc[ ]和.lic[ ]示例:
# 表达式与切片一致
df.loc[df['Q1']> 90, 'Q1':] # Q1大于90,只显示Q1
df.loc[(df.Q1> 80) & (df.Q2 < 15)] # and关系
df.loc[(df.Q1> 90) | (df.Q2 < 90)] # or关系
df.loc[df['Q1']== 8] # 等于8
df.loc[df.Q1== 8] # 等于8
df.loc[df['Q1']> 90, 'Q1':] # Q1大于90,显示Q1及其后所有列
3、函数筛选
# 查询最大索引的值
df.Q1[lambdas: max(s.index)] # 值为21
# 计算最大值
max(df.Q1.index)
# 99
df.Q1[df.index==99]
4、比较函数
# 以下相当于 df[df.Q1 == 60]
df[df.Q1.eq(60)]
df.ne() # 不等于 !=
df.le() # 小于等于 <=
df.lt() # 小于 <
df.ge() # 大于等于 >=
df.gt() # 大于 >5、查询df.query()
df.query('Q1 > Q2 > 90') # 直接写类型SQL where语句还支持使用@符引入变量
# 支持传入变量,如大于平均分40分的
a = df.Q1.mean()
df.query('Q1 > @a+40')
df.query('Q1 > `Q2`+@a')df.eval()与df.query()类似,也可以用于表达式筛选。
# df.eval()用法与df.query类似
df[df.eval("Q1 > 90 > Q3 >10")]
df[df.eval("Q1 > `Q2`+@a")]6、筛选df.filter()
df.filter(items=['Q1', 'Q2']) # 选择两列
df.filter(regex='Q', axis=1) # 列名包含Q的列
df.filter(regex='e#39;, axis=1) # 以e结尾的列
df.filter(regex='1#39;, axis=0) # 正则,索引名以1结尾
df.filter(like='2', axis=0) # 索引中有2的
# 索引中以2开头、列名有Q的
df.filter(regex='^2',axis=0).filter(like='Q', axis=1)7、按数据类型查询
df.select_dtypes(include=['float64']) # 选择float64型数据
df.select_dtypes(include='bool')
df.select_dtypes(include=['number']) # 只取数字型
df.select_dtypes(exclude=['int']) # 排除int类型
df.select_dtypes(exclude=['datetime64'])02、数据类型转换
在开始数据分析前,我们需要为数据分配好合适的类型,这样才能够高效地处理数据。不同的数据类型适用于不同的处理方法。
# 对所有字段指定统一类型
df = pd.DataFrame(data, dtype='float32')
# 对每个字段分别指定
df = pd.read_excel(data, dtype={'team':'string', 'Q1': 'int32'})1、推断类型
# 自动转换合适的数据类型
df.infer_objects() # 推断后的DataFrame
df.infer_objects().dtypes2、指定类型
# 按大体类型推定
m = ['1', 2, 3]
s = pd.to_numeric(s) # 转成数字
pd.to_datetime(m) # 转成时间
pd.to_timedelta(m) # 转成时间差
pd.to_datetime(m, errors='coerce') # 错误处理
pd.to_numeric(m, errors='ignore')
pd.to_numeric(m errors='coerce').fillna(0) # 兜底填充
pd.to_datetime(df[['year', 'month', 'day']])
# 组合成日期3、类型转换astype()
df.Q1.astype('int32').dtypes
# dtype('int32')
df.astype({'Q1': 'int32','Q2':'int32'}).dtypes4、转为时间类型
t = pd.Series(['20200801', '20200802'])03、数据排序
数据排序是指按一定的顺序将数据重新排列,帮助使用者发现数据的变化趋势,同时提供一定的业务线索,还具有对数据纠错、分类等作用。
1、索引排序df.sort_index()
s.sort_index() # 升序排列
df.sort_index() # df也是按索引进行排序
df.team.sort_index()s.sort_index(ascending=False)# 降序排列
s.sort_index(inplace=True) # 排序后生效,改变原数据
# 索引重新0-(n-1)排,很有用,可以得到它的排序号
s.sort_index(ignore_index=True)
s.sort_index(na_position='first') # 空值在前,另'last'表示空值在后
s.sort_index(level=1) # 如果多层,排一级
s.sort_index(level=1, sort_remaining=False) #这层不排
# 行索引排序,表头排序
df.sort_index(axis=1) # 会把列按列名顺序排列2、数值排序sort_values()
df.Q1.sort_values()
df.sort_values('Q4')
df.sort_values(by=['team', 'name'],ascending=[True, False])其他方法:
s.sort_values(ascending=False) # 降序
s.sort_values(inplace=True) # 修改生效
s.sort_values(na_position='first') # 空值在前
# df按指定字段排列
df.sort_values(by=['team'])
df.sort_values('Q1')
# 按多个字段,先排team,在同team内再看Q1
df.sort_values(by=['team', 'Q1'])
# 全降序
df.sort_values(by=['team', 'Q1'], ascending=False)
# 对应指定team升Q1降
df.sort_values(by=['team', 'Q1'],ascending=[True, False])
# 索引重新0-(n-1)排
df.sort_values('team', ignore_index=True)3、混合排序
df.set_index('name', inplace=True) # 设置name为索引
df.index.names = ['s_name'] # 给索引起名
df.sort_values(by=['s_name', 'team']) # 排序4、按值大小排序nsmallest()和nlargest()
s.nsmallest(3) # 最小的3个
s.nlargest(3) # 最大的3个
# 指定列
df.nlargest(3, 'Q1')
df.nlargest(5, ['Q1', 'Q2'])
df.nsmallest(5, ['Q1', 'Q2'])04、添加修改
数据的修改、增加和删除在数据整理过程中时常发生。修改的情况一般是修改错误、格式转换,数据的类型修改等。
1、修改数值
df.iloc[0,0] # 查询值
# 'Liver'
df.iloc[0,0] = 'Lily' # 修改值
df.iloc[0,0] # 查看结果
# 'Lily'
# 将小于60分的成绩修改为60
df[df.Q1 < 60] = 60
# 查看
df.Q1
# 生成一个长度为100的列表
v = [1, 3, 5, 7, 9] * 202、替换数据
s.replace(0, 5) # 将列数据中的0换为5
df.replace(0, 5) # 将数据中的所有0换为5
df.replace([0, 1, 2, 3], 4) # 将0~3全换成4
df.replace([0, 1, 2, 3], [4, 3, 2, 1]) # 对应修改
s.replace([1, 2], method='bfill') # 向下填充
df.replace({0: 10, 1: 100}) # 字典对应修改
df.replace({'Q1': 0, 'Q2': 5}, 100) # 将指定字段的指定值修改为100
df.replace({'Q1': {0: 100, 4: 400}}) # 将指定列里的指定值替换为另一个指定的值3、填充空值
df.fillna(0) # 将空值全修改为0
# {'backfill', 'bfill', 'pad', 'ffill',None}, 默认为None
df.fillna(method='ffill') # 将空值都修改为其前一个值
values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
df.fillna(value=values) # 为各列填充不同的值
df.fillna(value=values, limit=1) # 只替换第一个4、修改索引名
df.rename(columns={'team':'class'})常用方法如下:
df.rename(columns={"Q1":"a", "Q2": "b"}) # 对表头进行修改
df.rename(index={0: "x", 1:"y", 2: "z"}) # 对索引进行修改
df.rename(index=str) # 对类型进行修改
df.rename(str.lower, axis='columns') # 传索引类型
df.rename({1: 2, 2: 4}, axis='index')
# 对索引名进行修改
s.rename_axis("animal")
df.rename_axis("animal") # 默认是列索引
df.rename_axis("limbs",axis="columns") # 指定行索引
# 索引为多层索引时可以将type修改为class
df.rename_axis(index={'type': 'class'})
# 可以用set_axis进行设置修改
s.set_axis(['a', 'b', 'c'], axis=0)
df.set_axis(['I', 'II'], axis='columns')
df.set_axis(['i', 'ii'], axis='columns',inplace=True)5、增加列
df['foo'] = 100 # 增加一列foo,所有值都是100
df['foo'] = df.Q1 + df.Q2 # 新列为两列相加
df['foo'] = df['Q1'] + df['Q2'] # 同上
# 把所有为数字的值加起来
df['total'] =df.select_dtypes(include=['int']).sum(1)df['total'] =
df.loc[:,'Q1':'Q4'].apply(lambda x: sum(x), axis='columns')
df.loc[:, 'Q10'] = '我是新来的' # 也可以
# 增加一列并赋值,不满足条件的为NaN
df.loc[df.num >= 60, '成绩'] = '合格'
df.loc[df.num < 60, '成绩'] = '不合格'6、插入列df.insert()
# 在第三列的位置上插入新列total列,值为每行的总成绩
df.insert(2, 'total', df.sum(1))7、指定列df.assign()
# 增加total列
df.assign(total=df.sum(1))
# 增加两列
df.assign(total=df.sum(1), Q=100)
df.assign(total=df.sum(1)).assign(Q=100)
其他使用示例:
df.assign(Q5=[100]*100) # 新增加一列Q5
df = df.assign(Q5=[100]*100) # 赋值生效
df.assign(Q6=df.Q2/df.Q1) # 计算并增加Q6
df.assign(Q7=lambda d: d.Q1 * 9 / 5 + 32) # 使用lambda# 添加一列,值为表达式结果:True或False
df.assign(tag=df.Q1>df.Q2)
# 比较计算,True为1,False为0
df.assign(tag=(df.Q1>df.Q2).astype(int))
# 映射文案
df.assign(tag=(df.Q1>60).map({True:'及格',False:'不及格'}))
# 增加多个
df.assign(Q8=lambda d: d.Q1*5,
Q9=lambda d: d.Q8+1) # Q8没有生效,不能直接用df.Q88、执行表达式df.eval()
# 传入求总分表达式
df.eval('total = Q1+Q3+Q3+Q4')
其他方法:
df['C1'] = df.eval('Q2 + Q3')
df.eval('C2 = Q2 + Q3') # 计算
a = df.Q1.mean()df.eval("C3 =`Q3`+@a") # 使用变量
df.eval("C3 = Q2 > (`Q3`+@a)") #加一个布尔值
df.eval('C4 = name + team', inplace=True) # 立即生效9、增加行
# 新增索引为100的数据
df.loc[100] = ['tom', 'A', 88, 88, 88, 88]其他方法:
df.loc[101]={'Q1':88,'Q2':99} # 指定列,无数据列值为NaN
df.loc[df.shape[0]+1] = {'Q1':88,'Q2':99} # 自动增加索引
df.loc[len(df)+1] = {'Q1':88,'Q2':99}
# 批量操作,可以使用迭代
rows = [[1,2],[3,4],[5,6]]
for row in rows:
df.loc[len(df)] = row10、追加合并
df = pd.DataFrame([[1, 2], [3, 4]],columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]],columns=list('AB'))
df.append(df2)11、删除
# 删除索引为3的数据
s.pop(3)
# 93s
s12、删除空值
df.dropna() # 一行中有一个缺失值就删除
df.dropna(axis='columns') # 只保留全有值的列
df.dropna(how='all') # 行或列全没值才删除
df.dropna(thresh=2) # 至少有两个空值时才删除
df.dropna(inplace=True) # 删除并使替换生效05、高级过滤
介绍几个非常好用的复杂数据处理的数据过滤输出方法。
1、df.where()
# 数值大于70
df.where(df > 70)2、np.where()
# 小于60分为不及格
np.where(df>=60, '合格', '不合格')3、df.mask()
# 符合条件的为NaN
df.mask(s > 80)4、df.lookup()
# 行列相同数量,返回一个array
df.lookup([1,3,4], ['Q1','Q2','Q3']) # array([36, 96, 61])
df.lookup([1], ['Q1']) # array([36])06、数据迭代
1、迭代Series
# 迭代指定的列
for i in df.name:
print(i)
# 迭代索引和指定的两列
for i,n,q in zip(df.index, df.name,df.Q1):
print(i, n, q)2、df.iterrows()
# 迭代,使用name、Q1数据
for index, row in df.iterrows():
print(index, row['name'], row.Q1)3、df.itertuples()
for row in df.itertuples():
print(row)4、df.items()
# Series取前三个
for label, ser in df.items():
print(label)
print(ser[:3], end='\n\n')5、按列迭代
# 直接对DataFrame迭代
for column in df:
print(column)07、函数应用
1、pipe()
应用在整个DataFrame或Series上。
# 对df多重应用多个函数
f(g(h(df), arg1=a), arg2=b, arg3=c)
# 用pipe可以把它们连接起来
(df.pipe(h)
.pipe(g, arg1=a)
.pipe(f, arg2=b, arg3=c)
)2、apply()
应用在DataFrame的行或列中,默认为列。
# 将name全部变为小写
df.name.apply(lambda x: x.lower())3、applymap()
应用在DataFrame的每个元素中。
# 计算数据的长度
def mylen(x):
return len(str(x))
df.applymap(lambda x:mylen(x)) # 应用函数
df.applymap(mylen) # 效果同上4、map()
应用在Series或DataFrame的一列的每个元素中。
df.team.map({'A':'一班', 'B':'二班','C':'三班', 'D':'四班',})# 枚举替换
df['name'].map(f)5、agg()
# 每列的最大值
df.agg('max')
# 将所有列聚合产生sum和min两行
df.agg(['sum', 'min'])
# 序列多个聚合
df.agg({'Q1' : ['sum', 'min'], 'Q2' : ['min','max']})
# 分组后聚合
df.groupby('team').agg('max')
df.Q1.agg(['sum', 'mean'])6、transform()
df.transform(lambda x: x*2) # 应用匿名函数
df.transform([np.sqrt, np.exp]) # 调用多个函数7、copy()
s = pd.Series([1, 2], index=["a","b"])
s_1 = s
s_copy = s.copy()
s_1 is s # True
s_copy is s # False相关推荐
- 压缩文件查看器(压缩文件查看器密码是多少)
-
1,打开手机上面的文件管理器,找到要压缩的WPS文件。2,长按一下WPS文件,然后选择要压缩的文件。3,点击右下角的【更多】,选择【压缩】。4,对压缩文件进行保存,压缩完成。扩展资料:wps产品特点1...
- 键盘哪个是截图键(键盘中的截图键是哪一个)
-
1、按Prtsc键截图这样获取的是整个电脑屏幕的内容,按Prtsc键后,可以直接打开画图工具,接粘贴使用。也可以粘贴在QQ聊天框或者Word文档中,之后再选择保存即可。2、按Ctrl+Prtsc键截图...
- flash插件电脑版下载(flash插件下载安装)
-
可以不安装,不安装对电脑也不会有什么影响。友情提示,最好安装,这个也不会占用你多少内存,它是用来播放网页中的flash文件的。如果你不安装,网页中的flash动画就不能正常播放。浏览器也会提示你安装!...
- foxmail邮箱怎么设置(foxmail邮箱设置成功后点完成没反应)
-
操作步骤/方法1.打开新建界面:2.打开foxmail,在上方导航栏处找到“邮箱(B)”点开此功能,会看到一个下拉菜单,在下拉菜单中找到“新建邮箱账户(N)”。3.建立账户信息:4.点击“新建邮箱账...
- 电脑自动关机解决办法(电脑自动关机,原来是这里出了问题)
-
电脑自动关机的原因一、系统文件损坏一个完整的系统受到袭击之后,电脑就不能进行初始化,从而引起自动关机,这也是一个常见的原因。可以选择重装系统的方法来解决问题。电脑自动关机的原因二、CPU太热这是电脑自...
- m2固态硬盘安装系统教程(m2固态如何装系统)
-
加装m.2固态硬盘后,重装系统的操作步骤如下:1、下载U盘启动盘制作工具,下载一个GHOST版最新的WIN7,准备一个足够大的U盘(16G足够了),用U盘启动盘制作工具将其制作成启动U盘;2、插入新电...
- 运行chkdsk工具(运行chkdsk工具怎么解决)
-
1、win+R键打开运行,输入cmd。2、输入并回车执行chkdsk/?命令,可以了解chkdsk命令的使用方法。3、比如一些常用的命令,输入并按回车执行chkdskm:/f命令,可以检...
- 办公软件2007官方下载免费完整版
-
office字体都变成了英文是因为设置了英文模式。具体的解决步骤如下:我们需要准备的材料分别是:电脑、Word文档。1、首先我们打开Word文档,点击打开左上角的文件中的“选项”。2、然后我们在弹出来...
- 手机u盘有必要买吗(手机u盘需要什么软件)
-
网上卖的手机U盘大都是各地的实体数码店进行发货和销售的。他们采用的U盘质量和工厂生产的质量是一致的。并没有什么区别对待。而且由于网上销售费用比较低,所以他在售卖比实体数码店售卖的价格更低,所以这种手机...
- 电脑系统怎么下载到u盘中(电脑系统win7纯净版下载官方免费版最新版)
-
下载电脑系统,可以到电脑系统资源下载网站,找到下载页面的下载点,右击下载点,选择迅雷下载,可以把系统文件下载到硬盘里,然后插上U盘,将下载好的系统文件复制到U盘。另一种方法是,将迅雷软件的默认下载路径...
- 小米主题安装器(红米主题商店app下载安装)
-
很抱歉,一加九手机无法直接安装小米主题。因为一加九和小米手机使用的是不同的操作系统和主题引擎,它们之间不兼容。一加九使用的是基于Android的OxygenOS操作系统,而小米手机使用的是基于Andr...
- hp电脑恢复出厂系统(hp电脑恢复出厂系统操作)
-
在开始菜单的【设置】中找到【重置此电脑】的选项即可开始重置恢复到出厂设置;如果您需要整个硬盘格式化,可以选择其中的【删除所有文件】的选项,等待系统设置完成之后会重新进入新系统设置。以下是详细介绍:...
- ghost做c盘镜像的步骤(ghost制作镜像步骤)
-
共9个步骤:1、一般GHOST工具是在PE启动后使用,这个就是PE中GHOST所在路径,找到这个软件并运行。2、界面是英文版本的,因为软件的易操作易学习性,所以这个软件基本没有中文版版本,然后在弹出的...
- win10家庭版怎么激活系统(win10家庭版激活步骤)
-
win10家庭中文版怎么激活1.在win10系统桌面上,点击左下角的开始按钮选择设置选项进入。2.进入设置列表菜单,点击更新和安全选项进入。3.点击激活选项继续下一步操作。4.在弹出输入产品密钥的对话...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
