百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas 入门教程 - 第五课: 高级数据操作

liuian 2025-01-12 16:24 13 浏览


在前几节课中,我们学习了如何使用 Pandas 进行数据操作和可视化。在这一课中,我们将进一步探索一些高级的数据操作技巧,包括数据透视、分组聚合、时间序列处理以及高级索引和切片。

高级索引和切片

高级索引

Pandas 提供了强大的索引功能,可以让我们轻松地访问和操作数据。

布尔索引

import pandas as pd

# 创建一个简单的 DataFrame
df = pd.DataFrame({
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, 30, 35, 40],
    'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
})

# 使用布尔索引选择年龄大于 30 的人
filtered_df = df[df['Age'] > 30]
print(filtered_df)
      Name  Age     City
2  Charlie   35  Chicago
3    David   40  Houston

切片和切片

# 使用切片选择特定范围的行和列
subset_df = df[1:3, 0:2]  # 选择第 2 行到第 3 行,第 1 列到第 2 列
print(subset_df)

位置索引

# 使用位置索引选择特定行和列
row_at_index_2 = df.iloc[1]  # 选择第 2 行
print(row_at_index_2)

column_at_index_1 = df.iloc[:, 0]  # 选择第 1 列
print(column_at_index_1)
Name            Bob
Age              30
City    Los Angeles
Name: 1, dtype: object
0      Alice
1        Bob
2    Charlie
3      David
Name: Name, dtype: object

标签索引

# 使用标签索引选择特定行和列
row_at_label_Bob = df.loc[df['Name'] == 'Bob']  # 选择 'Name' 为 'Bob' 的行
print(row_at_label_Bob)

column_at_label_Age = df.loc[:, 'Age']  # 选择 'Age' 列
print(column_at_label_Age)
  Name  Age         City
1  Bob   30  Los Angeles
0    25
1    30
2    35
3    40
Name: Age, dtype: int64

高级切片

Pandas 还支持更复杂的切片操作,如基于条件的切片。

基于条件的切片

# 使用条件表达式进行切片
filtered_df = df[(df['Age'] > 25) & (df['City'] == 'Chicago')]
print(filtered_df)
      Name  Age     City
2  Charlie   35  Chicago

分组聚合

分组聚合

Pandas 的 groupby() 方法允许我们对数据集进行分组,并对每个组进行聚合操作。

聚合函数

import pandas as pd

# 创建一个简单的 DataFrame
df = pd.DataFrame({
    'Category': ['A', 'A', 'B', 'B', 'C'],
    'Value': [10, 20, 30, 40, 50]
})

# 使用 groupby() 方法按 'Category' 列分组,并计算每个组的平均值
grouped_df = df.groupby('Category').mean()
print(grouped_df)
          Value
Category       
A          15.0
B          35.0
C          50.0

自定义聚合函数

# 定义一个自定义聚合函数
def custom_aggregate(values):
    return sum(values) / len(values)

# 使用 groupby() 方法按 'Category' 列分组,并使用自定义聚合函数
grouped_df_custom = df.groupby('Category').agg(custom_aggregate)
print(grouped_df_custom)
          Value
Category       
A          15.0
B          35.0
C          50.0

时间序列处理

时间序列数据处理

Pandas 提供了强大的时间序列处理功能,可以处理日期和时间数据。

创建时间序列

import pandas as pd

# 创建一个日期范围
dates = pd.date_range('2020-01-01', periods=100)

# 创建一个时间序列 DataFrame
ts_df = pd.DataFrame({
    'Date': dates,
    'Value': np.random.randn(100)
})

print(ts_df)
         Date     Value
0  2020-01-01  2.032894
1  2020-01-02 -1.208483
2  2020-01-03 -0.532763
3  2020-01-04  2.169684
4  2020-01-05  0.580246
..        ...       ...
95 2020-04-05  0.254223
96 2020-04-06  0.461171
97 2020-04-07  0.282761
98 2020-04-08  0.091264
99 2020-04-09  0.464295

[100 rows x 2 columns]

时间序列操作

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 创建一个日期范围
dates = pd.date_range('2020-01-01', periods=100)

# 创建一个时间序列 DataFrame,并将日期设置为索引
ts_df = pd.DataFrame({
    'Value': np.random.randn(100)
}, index=dates)

# 确保 'Value' 列是数值类型
ts_df['Value'] = ts_df['Value'].astype(float)

# 时间序列频率转换
ts_df_quarterly = ts_df.resample('Q').mean()  # 转换为季度数据
ts_df_monthly = ts_df.resample('M').sum()  # 转换为月度数据

# 移动平均
ma_20 = ts_df['Value'].rolling(window=20).mean()

# 绘制时间序列图
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(ts_df.index, ts_df['Value'], label='Original Data')
plt.legend()

plt.subplot(2, 1, 2)
plt.plot(ma_20.index, ma_20, label='Moving Average (20 days)', color='red')
plt.legend()
plt.show()



练习题

  1. 使用 Pandas 创建一个包含日期和温度的 DataFrame,并将其转换为时间序列对象。
  2. 如何使用 Pandas 进行日期和时间的格式化和解析

相关推荐

vue怎么和后端php配合

Vue和后端PHP可以通过HTTP请求进行配合。首先,前端Vue可以使用axios库或者Vue自带的$http对象来发送HTTP请求到后端PHP接口。通过axios库发送POST、GET、PUT等请求...

Ansible最佳实践之 AWX 使用 Ansible 与 API 通信

#头条创作挑战赛#API简单介绍红帽AWX提供了一个类似Swagger的RESTful风格的Web服务框架,可以和awx直接交互。使管理员和开发人员能够在webUI之外控制其...

PHP8.3 错误处理革命:Exception 与 Error 全面升级

亲爱的小伙伴,好久没有发布信息了,最近学习了一下PHP8.3的升级,都有哪些优化和提升,把学到的分享出来给需要的小伙伴充下电。技术段位:高可用性必修目标收益:精准错误定位+异常链路追踪适配场景...

使用 mix/vega + mix/db 进行现代化的原生 PHP 开发

最近几年在javascript、golang生态中游走,发现很多npm、gomod的优点。最近回过头开发MixPHPV3,发现composer其实一直都是一个非常优秀的工具,但是...

15 个非常好用的 JSON 工具

JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...

php8环境原生实现rpc

大数据分布式架构盛行时代的程序员面试,常常遇到分布式架构,RPC,本文的主角是RPC,英文名为RemoteProcedureCall,翻译过来为“远程过程调用”。主流的平台中都支持各种远程调用技术...

「PHP编程」如何搭建私有Composer包仓库?

在前一篇文章「PHP编程」如何制作自己的Composer包?中,我们已经介绍了如何制作自己的composer包,以及如何使用composer安装自己制作的composer包。不过,这其中有...

WAF-Bypass之SQL注入绕过思路总结

过WAF(针对云WAF)寻找真实IP(源站)绕过如果流量都没有经过WAF,WAF当然无法拦截攻击请求。当前多数云WAF架构,例如百度云加速、阿里云盾等,通过更改DNS解析,把流量引入WAF集群,流量经...

【推荐】一款 IDEA 必备的 JSON 处理工具插件 — Json Assistant

JsonAssistant是基于IntelliJIDEs的JSON工具插件,让JSON处理变得更轻松!主要功能完全支持JSON5JSON窗口(多选项卡)选项卡更名移动至主编辑器用...

技术分享 | 利用PHAR协议进行PHP反序列化攻击

PHAR(“PhpARchive”)是PHP中的打包文件,相当于Java中的JAR文件,在php5.3或者更高的版本中默认开启。PHAR文件缺省状态是只读的,当我们要创建一个Phar文件需要修改...

php进阶到架构之swoole系列教程(一)windows安装swoole

目录概述安装Cygwin安装swoolephp7进阶到架构师相关阅读概述这是关于php进阶到架构之swoole系列学习课程:第一节:windows安装swoole学习目标:在Windows环境将搭建s...

go 和 php 性能如何进行对比?

PHP性能很差吗?每次讲到PHP和其他语言间的性能对比,似乎都会发现这样一个声音:单纯的性能对比没有意义,主要瓶颈首先是数据库,其次是业务代码等等。好像PHP的性能真的不能单独拿出来讨论似的。但其实一...

Linux(CentOS )手动搭建LNMP(Linux+Nginx+Mysql+PHP)坏境

CentOS搭建LNMP(Linux+Nginx+Mysql+PHP)坏境由于网上各种版本新旧不一,而且Linux版本也不尽相同,所以自己写一遍根据官网的提示自己手动搭建过程。看官方文档很重要,永远...

json和jsonp区别

JSON和JSONP虽然只有一个字母的差别,但其实他们根本不是一回事儿:JSON是一种数据交换格式,而JSONP是一种非官方跨域数据交互协议。一个是描述信息的格式,一个是信息传递的约定方法。一、...

web后端正确的返回JSON

在web开发中,前端和后端发生数据交换传输现在最常见的形式就是异步ajax交互,一般返回给js都是json,如何才是正确的返回呢?前端代码想要获取JSON数据代码如下:$.get('/user-inf...