百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas 入门教程 - 第五课: 高级数据操作

liuian 2025-01-12 16:24 45 浏览


在前几节课中,我们学习了如何使用 Pandas 进行数据操作和可视化。在这一课中,我们将进一步探索一些高级的数据操作技巧,包括数据透视、分组聚合、时间序列处理以及高级索引和切片。

高级索引和切片

高级索引

Pandas 提供了强大的索引功能,可以让我们轻松地访问和操作数据。

布尔索引

import pandas as pd

# 创建一个简单的 DataFrame
df = pd.DataFrame({
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, 30, 35, 40],
    'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
})

# 使用布尔索引选择年龄大于 30 的人
filtered_df = df[df['Age'] > 30]
print(filtered_df)
      Name  Age     City
2  Charlie   35  Chicago
3    David   40  Houston

切片和切片

# 使用切片选择特定范围的行和列
subset_df = df[1:3, 0:2]  # 选择第 2 行到第 3 行,第 1 列到第 2 列
print(subset_df)

位置索引

# 使用位置索引选择特定行和列
row_at_index_2 = df.iloc[1]  # 选择第 2 行
print(row_at_index_2)

column_at_index_1 = df.iloc[:, 0]  # 选择第 1 列
print(column_at_index_1)
Name            Bob
Age              30
City    Los Angeles
Name: 1, dtype: object
0      Alice
1        Bob
2    Charlie
3      David
Name: Name, dtype: object

标签索引

# 使用标签索引选择特定行和列
row_at_label_Bob = df.loc[df['Name'] == 'Bob']  # 选择 'Name' 为 'Bob' 的行
print(row_at_label_Bob)

column_at_label_Age = df.loc[:, 'Age']  # 选择 'Age' 列
print(column_at_label_Age)
  Name  Age         City
1  Bob   30  Los Angeles
0    25
1    30
2    35
3    40
Name: Age, dtype: int64

高级切片

Pandas 还支持更复杂的切片操作,如基于条件的切片。

基于条件的切片

# 使用条件表达式进行切片
filtered_df = df[(df['Age'] > 25) & (df['City'] == 'Chicago')]
print(filtered_df)
      Name  Age     City
2  Charlie   35  Chicago

分组聚合

分组聚合

Pandas 的 groupby() 方法允许我们对数据集进行分组,并对每个组进行聚合操作。

聚合函数

import pandas as pd

# 创建一个简单的 DataFrame
df = pd.DataFrame({
    'Category': ['A', 'A', 'B', 'B', 'C'],
    'Value': [10, 20, 30, 40, 50]
})

# 使用 groupby() 方法按 'Category' 列分组,并计算每个组的平均值
grouped_df = df.groupby('Category').mean()
print(grouped_df)
          Value
Category       
A          15.0
B          35.0
C          50.0

自定义聚合函数

# 定义一个自定义聚合函数
def custom_aggregate(values):
    return sum(values) / len(values)

# 使用 groupby() 方法按 'Category' 列分组,并使用自定义聚合函数
grouped_df_custom = df.groupby('Category').agg(custom_aggregate)
print(grouped_df_custom)
          Value
Category       
A          15.0
B          35.0
C          50.0

时间序列处理

时间序列数据处理

Pandas 提供了强大的时间序列处理功能,可以处理日期和时间数据。

创建时间序列

import pandas as pd

# 创建一个日期范围
dates = pd.date_range('2020-01-01', periods=100)

# 创建一个时间序列 DataFrame
ts_df = pd.DataFrame({
    'Date': dates,
    'Value': np.random.randn(100)
})

print(ts_df)
         Date     Value
0  2020-01-01  2.032894
1  2020-01-02 -1.208483
2  2020-01-03 -0.532763
3  2020-01-04  2.169684
4  2020-01-05  0.580246
..        ...       ...
95 2020-04-05  0.254223
96 2020-04-06  0.461171
97 2020-04-07  0.282761
98 2020-04-08  0.091264
99 2020-04-09  0.464295

[100 rows x 2 columns]

时间序列操作

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 创建一个日期范围
dates = pd.date_range('2020-01-01', periods=100)

# 创建一个时间序列 DataFrame,并将日期设置为索引
ts_df = pd.DataFrame({
    'Value': np.random.randn(100)
}, index=dates)

# 确保 'Value' 列是数值类型
ts_df['Value'] = ts_df['Value'].astype(float)

# 时间序列频率转换
ts_df_quarterly = ts_df.resample('Q').mean()  # 转换为季度数据
ts_df_monthly = ts_df.resample('M').sum()  # 转换为月度数据

# 移动平均
ma_20 = ts_df['Value'].rolling(window=20).mean()

# 绘制时间序列图
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(ts_df.index, ts_df['Value'], label='Original Data')
plt.legend()

plt.subplot(2, 1, 2)
plt.plot(ma_20.index, ma_20, label='Moving Average (20 days)', color='red')
plt.legend()
plt.show()



练习题

  1. 使用 Pandas 创建一个包含日期和温度的 DataFrame,并将其转换为时间序列对象。
  2. 如何使用 Pandas 进行日期和时间的格式化和解析

相关推荐

win7计算机图标怎么弄出来(win7怎么设置计算机图标)

您好,如果您的Win7桌面图标不见了,可以尝试以下方法:1.右键点击桌面的空白处,点击查看之后点击显示桌面图标。2.如果第一种方法不起作用,可以使用组合键“ctrl键+alt键+delete键”,...

usb打印机改wifi打印机(usb打印机改无线网络打印机)

首先要把打印机通过USB端口连接到路由器上,连接成功后路由器上的USB指示灯会亮。然后在需要使用网络打印机的电脑上安装打印机的驱动程序,这样才能够正常使用打印服务器连接的打印机。登录路由器,在左侧的系...

windows7没pdf打印机(win7系统自带的打印pdf找不到了)

建议安装Acrobat9,并安装9.1.3的AdobeReader/Acrobat的更新,去官网搜索即可,如果现有版本是9.1.0,则9.1.2和9.1.3的更新均需要安装.我实验的结果时9.0...

有两台iphone一台忘记密码(有两台iphone一台忘记锁屏密码)

iphone的锁屏密码输入错误次数过多,显示iphone已停用。解决办法:第一步:电脑上装好iTunes,并打开。第二步:关手机,插上数据线,注意只插手机这一端,先不接电脑。第三步:按住手机上的Hom...

快用苹果助手官网进不去(快用苹果助手怎么下载不了)

要在指定的网址上登录下载,苹果手机没有自动授信不能下载

电脑桌面图标的隐藏方法(电脑桌面图标的隐藏方法)
  • 电脑桌面图标的隐藏方法(电脑桌面图标的隐藏方法)
  • 电脑桌面图标的隐藏方法(电脑桌面图标的隐藏方法)
  • 电脑桌面图标的隐藏方法(电脑桌面图标的隐藏方法)
  • 电脑桌面图标的隐藏方法(电脑桌面图标的隐藏方法)
安装本地打印机的方法和步骤
  • 安装本地打印机的方法和步骤
  • 安装本地打印机的方法和步骤
  • 安装本地打印机的方法和步骤
  • 安装本地打印机的方法和步骤
复制快捷键ctrl+c(复制快捷键ctrl+c还有什么)

ctrl+c:复制;ctrl+v:粘贴,其他快捷键如下:Ctrl+Z撤消操作Ctrl+Y:恢复操作Delete(或Ctrl+D):删除所选的项目,将其移至回收站Shift+Delet...

微信主页背景墙壁纸怎么设置
  • 微信主页背景墙壁纸怎么设置
  • 微信主页背景墙壁纸怎么设置
  • 微信主页背景墙壁纸怎么设置
  • 微信主页背景墙壁纸怎么设置
校园网wifi免认证软件(校园网统一身份认证平台)

这个不存在犯法不犯法的问题,也就是说学校的网络是给你便捷使用的,反正都是给你使用的,你如何登录都没有任何的关系,其次就是你自己办的网的话,你有权利随意的更改,没办网的话那你就用学校的。1这是不道德和...

如何查看windows激活密钥(查看windows激活密钥命令)

可以按照以下步骤查看Windows系统的激活密钥:1.首先打开命令提示符,可通过在搜索栏中输入"cmd",然后右键管理员身份打开。2.在打开的命令提示符窗口中输入指令:slmgr/d...

dlink路由器(dlink路由器无法连接网络)

设置D-Link无线路由器无线桥接的具体步骤如下:1、将电脑与路由器的任意lan口连接,打开浏览器输入192.168.1.1,进入路由器管理页面。点击lan口设置,将lan口ip改为192.168.2...

c5game开箱网(c5game开箱网是正规的吗)

苹果c5game开箱操作很简单,首先进入c5game网站,选择打开自己的背包,然后找到自己想要开箱的物品,点击开箱按钮即可。在开箱过程中,会弹出一个开箱界面,按照界面提示进行操作,等待开箱过程结束即可...

ps5官网(playstation 官网)

在官网买ps5需要玩家收到预购邀请才可以。索尼决定遴选出一批忠实玩家,率先向其提供PS5实机预定服务,数量有限,先到先得。玩家只需在PlayStation.com网站完成注册手续。若有幸等到预购邀请电...

笔记本添加打印机步骤(电脑添加打印机步骤)
  • 笔记本添加打印机步骤(电脑添加打印机步骤)
  • 笔记本添加打印机步骤(电脑添加打印机步骤)
  • 笔记本添加打印机步骤(电脑添加打印机步骤)
  • 笔记本添加打印机步骤(电脑添加打印机步骤)