Python办公自动化之Excel做表自动化
liuian 2025-01-12 16:24 45 浏览
Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作!
数据读取
说明:读取本地Excel数据
Excel
Excel读取本地数据需要打开目标文件夹选中该文件并打开
Pandas
Pandas支持读取本地Excel、txt文件,也支持从网页直接读取表格数据,只用一行代码即可,例如读取上述本地Excel数据可以使用pd.read_excel("示例数据.xlsx")
数据生成
说明:生成指定格式/数量的数据
Excel
以生成10*2的0—1均匀分布随机数矩阵为例,在Excel中需要使用rand()函数生成随机数,并手动拉取指定范围
Pandas
在Pandas中可以结合NumPy生成由指定随机数(均匀分布、正态分布等)生成的矩阵,例如同样生成10*2的0—1均匀分布随机数矩阵为,使用一行代码即可:pd.DataFrame(np.random.rand(10,2))
数据存储
说明:将表格中的数据存储至本地
Excel
在Excel中需要点击保存并设置格式/文件名
Pandas
在Pandas中可以使用pd.to_excel("filename.xlsx")来将当前工作表格保存至当前目录下,当然也可以使用to_csv保存为csv等其他格式,也可以使用绝对路径来指定保存位置
数据筛选
说明:按照指定要求筛选数据
Excel
使用我们之前的示例数据,在Excel中筛选出薪资大于5000的数据步骤如下
Pandas
在Pandas中,可直接对数据框进行条件筛选,例如同样进行单个条件(薪资大于5000)的筛选可以使用df[df['薪资水平']>5000],如果使用多个条件的筛选只需要使用&(并)与|(或)操作符实现
数据插入
说明:在指定位置插入指定数据
Excel
在Excel中我们可以将光标放在指定位置并右键增加一行/列,当然也可以在添加时对数据进行一些计算,比如我们就可以使用IF函数(=IF(G2>10000,"高","低")),将薪资大于10000的设为高,低于10000的设为低,添加一列在最后
Pandas
在pandas中,如果不借助自定义函数的话,我们可以使用cut方法来实现同样操作
bins = [0,10000,max(df['薪资水平'])]
group_names = ['低','高']
df['new_col'] = pd.cut(df['薪资水平'], bins, labels=group_names)
数据删除
说明:删除指定行/列/单元格
Excel
在Excel删除数据十分简单,找到需要删除的数据右键删除即可,比如删除刚刚生成的最后一列
Pandas
在pandas中删除数据也很简单,比如删除最后一列使用del df['new_col']即可
数据排序
说明:按照指定要求对数据排序
Excel
在Excel中可以点击排序按钮进行排序,例如将示例数据按照薪资从高到低进行排序可以按照下面的步骤进行
Pandas
在pandas中可以使用sort_values进行排序,使用ascending来控制升降序,例如将示例数据按照薪资从高到低进行排序可以使用df.sort_values("薪资水平",ascending=False,inplace=True)
缺失值处理
说明:对缺失值(空值)按照指定要求处理
Excel
在Excel中可以按照查找—>定位条件—>空值来快速定位数据中的空值,接着可以自己定义缺失值的填充方式,比如将缺失值用上一个数据进行填充
Pandas
在pandas中可以使用data.isnull().sum()来检查缺失值,之后可以使用多种方法来填充或者删除缺失值,比如我们可以使用df = df.fillna(axis=0,method='ffill')来横向/纵向用缺失值前面的值替换缺失值
数据去重
说明:对重复值按照指定要求处理
Excel
在Excel中可以通过点击数据—>删除重复值按钮并选择需要去重的列即可,例如对示例数据按照创建时间列进行去重,可以发现去掉了196 个重复值,保留了 629 个唯一值。
Pandas
在pandas中可以使用drop_duplicates来对数据进行去重,并且可以指定列以及保留顺序,例如对示例数据按照创建时间列进行去重df.drop_duplicates(['创建时间'],inplace=True),可以发现和Excel处理的结果一致,保留了 629 个唯一值。
格式修改
说明:修改指定数据的格式
Excel
在Excel中可以选中需要转换格式的数据之后右键—>修改单元格格式来选择我们需要的格式
Pandas
在Pandas中没有一个固定修改格式的方法,不同的数据格式有着不同的修改方法,比如类似Excel中将创建时间修改为年-月-日可以使用df['创建时间'] = df['创建时间'].dt.strftime('%Y-%m-%d')
数据交换
说明:交换指定数据
Excel
在Excel中交换数据是很常用的操作,以交换示例数据中地址与岗位两列为例,可以选中地址列,按住shift键并拖动边缘至下一列松开即可
Pandas
在pandas中交换两列也有很多方法,以交换示例数据中地址与岗位两列为例,可以通过修改列号来实现
数据合并
说明:将两列或多列数据合并成一列
Excel
在Excel中可以使用公式也可以使用Ctrl+E快捷键完成多列合并,以公式为例,合并示例数据中的地址+岗位列步骤如下
Pandas
在Pandas中合并多列比较简单,类似于之前的数据插入操作,例如合并示例数据中的地址+岗位列使用df['合并列'] = df['地址'] + df['岗位']
数据拆分
说明:将一列按照规则拆分为多列
Excel
在Excel中可以通过点击数据—>分列并按照提示的选项设置相关参数完成分列,但是由于该列含有[]等特殊字符,所以需要先使用查找替换去掉
Pandas
在Pandas中可以使用.split来完成分列,但是在分列完毕后需要使用merge来将分列完的数据添加至原DataFrame,对于分列完的数据含有[]字符,我们可以使用正则或者字符串lstrip方法进行处理,但因不是pandas特性,此处不再展开。
数据分组
说明:对数据进行分组计算
Excel
在Excel中对数据进行分组计算需要先对需要分组的字段进行排序,之后可以通过点击分类汇总并设置相关参数完成,比如对示例数据的学历进行分组并求不同学历的平均薪资
Pandas
在Pandas中对数据进行分组计算可以使用groupby轻松搞定,比如使用df.groupby("学历").mean()一行代码即可对示例数据的学历进行分组并求不同学历的平均薪资,结果与Excel一致
数据计算
说明:对数据进行一些计算
Excel
在Excel中有很多计算相关的公式,比如可以使用COUNTIFS来统计薪资大于10000的岗位数量有518个
Pandas
在Pandas中可以直接使用类似数据筛选的方法来统计薪资大于10000的岗位数量len(df[df["薪资水平"]>10000])
数据统计
说明:对数据进行一些统计计算
Excel
在Excel中有很多统计相关的公式,也有现成的分析工具,比如对薪资水平列进行描述性统计分析,可以通过添加工具库之后点击数据分析按钮并设置相关参数
Pandas
在pandas中也有现成的函数describe快速完成对数据的描述性统计,比如使用df["薪资水平"].describe()即可得到薪资列的描述性统计结果
数据可视化
说明:对数据进行可视化
Excel
在Excel中可以通过点击插入并选择图表来快速完成对数据的可视化,比如制作薪资的直方图,并且有很多样式可以直接使用
Pandas
在Pandas中也支持直接对数据绘制不同可视化图表,例如直方图,可以使用plot或者直接使用hist来制作df["薪资水平"].hist()
数据抽样
说明:对数据按要求采样
Excel
在Excel中抽样可以使用公式也可以使用分析工具库中的抽样,但是仅支持对数值型的列抽样,比如随机抽20个示例数据中薪资的样本
Pandas
在pandas中有抽样函数sample可以直接抽样,并且支持任意格式的数据抽样,可以按照数量/比例抽样,比如随机抽20个示例数据中的样本
数据透视表
说明:制作数据透视表
Excel
数据透视表是一个非常强大的工具,在Excel中有现成的工具,只需要选中数据—>点击插入—>数据透视表即可生成,并且支持字段的拖取实现不同的透视表,非常方便,比如制作地址、学历、薪资的透视表
Pandas
在Pandas中制作数据透视表可以使用pivot_table函数,例如制作地址、学历、薪资的透视表pd.pivot_table(df,index=["地址","学历"],values=["薪资水平"]),虽然结果一样,但是并没有Excel一样方便调整与多样
vlookup
说明:利用VLOOKUP查找数据
Excel
VLOOKUP算是EXCEL中最核心的功能之一了,我们用一个简单的数据来进行示例
Pandas
在Pandas中没有现成的vlookup函数,所以实现匹配查找需要一些步骤,首先我们读取该表格
接着将该dataframe切分为两个
最后修改索引并使用update进行两表的匹配
结束语
以上就是使用Pandas来演示如何实现Excel中的常用操作的全部过程,其实可以发现Excel的优点就是大多由交互式的点击完成数据处理,而Pandas则完全依赖于代码,对于有些操作比如数据透视表,用Excel制作更加方便,而有些操作比如数据的分组、计算等,因Pandas可以与NumPy等其他优秀的Python库结合而显得更加强大,所以我们在处理数据时也需要正确选择使用的工具!
相关推荐
- win7计算机图标怎么弄出来(win7怎么设置计算机图标)
-
您好,如果您的Win7桌面图标不见了,可以尝试以下方法:1.右键点击桌面的空白处,点击查看之后点击显示桌面图标。2.如果第一种方法不起作用,可以使用组合键“ctrl键+alt键+delete键”,...
- usb打印机改wifi打印机(usb打印机改无线网络打印机)
-
首先要把打印机通过USB端口连接到路由器上,连接成功后路由器上的USB指示灯会亮。然后在需要使用网络打印机的电脑上安装打印机的驱动程序,这样才能够正常使用打印服务器连接的打印机。登录路由器,在左侧的系...
- windows7没pdf打印机(win7系统自带的打印pdf找不到了)
-
建议安装Acrobat9,并安装9.1.3的AdobeReader/Acrobat的更新,去官网搜索即可,如果现有版本是9.1.0,则9.1.2和9.1.3的更新均需要安装.我实验的结果时9.0...
- 有两台iphone一台忘记密码(有两台iphone一台忘记锁屏密码)
-
iphone的锁屏密码输入错误次数过多,显示iphone已停用。解决办法:第一步:电脑上装好iTunes,并打开。第二步:关手机,插上数据线,注意只插手机这一端,先不接电脑。第三步:按住手机上的Hom...
- 快用苹果助手官网进不去(快用苹果助手怎么下载不了)
-
要在指定的网址上登录下载,苹果手机没有自动授信不能下载
- 复制快捷键ctrl+c(复制快捷键ctrl+c还有什么)
-
ctrl+c:复制;ctrl+v:粘贴,其他快捷键如下:Ctrl+Z撤消操作Ctrl+Y:恢复操作Delete(或Ctrl+D):删除所选的项目,将其移至回收站Shift+Delet...
- 校园网wifi免认证软件(校园网统一身份认证平台)
-
这个不存在犯法不犯法的问题,也就是说学校的网络是给你便捷使用的,反正都是给你使用的,你如何登录都没有任何的关系,其次就是你自己办的网的话,你有权利随意的更改,没办网的话那你就用学校的。1这是不道德和...
- 如何查看windows激活密钥(查看windows激活密钥命令)
-
可以按照以下步骤查看Windows系统的激活密钥:1.首先打开命令提示符,可通过在搜索栏中输入"cmd",然后右键管理员身份打开。2.在打开的命令提示符窗口中输入指令:slmgr/d...
- dlink路由器(dlink路由器无法连接网络)
-
设置D-Link无线路由器无线桥接的具体步骤如下:1、将电脑与路由器的任意lan口连接,打开浏览器输入192.168.1.1,进入路由器管理页面。点击lan口设置,将lan口ip改为192.168.2...
- c5game开箱网(c5game开箱网是正规的吗)
-
苹果c5game开箱操作很简单,首先进入c5game网站,选择打开自己的背包,然后找到自己想要开箱的物品,点击开箱按钮即可。在开箱过程中,会弹出一个开箱界面,按照界面提示进行操作,等待开箱过程结束即可...
- ps5官网(playstation 官网)
-
在官网买ps5需要玩家收到预购邀请才可以。索尼决定遴选出一批忠实玩家,率先向其提供PS5实机预定服务,数量有限,先到先得。玩家只需在PlayStation.com网站完成注册手续。若有幸等到预购邀请电...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
