手把手教你插入数学公式,妈妈再也不用担心我写不了论文了
liuian 2024-12-01 00:56 41 浏览
LaTeX是专为学术写作开发的语言和编纂程序,拥有强大的package资源,这意味着用LaTeX写作可以避免Word带来的令人头疼的排版问题,而且世界上有很多人已经写好了针对各种写作格式的coding package,我们只需要套用这些package就行了。
- 行间公式 (inline):用$...$将公式括起来。
- 块间公式 (displayed),用$...$将公式括起来是无编号的形式块间元素默认是居中显示的。
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
- 上下标。
_{...}表示下标,^{...}表示上标。
它默认只作用于之后的一个字符,如果想对连续的几个字符起作用,请将这些字符用花括号{}括起来, 也就是下面分组的概念。
- 希腊字母
\alpha, \beta, ... \omega:,, \Gamma, \Delta, ... \Omega: ,,
- 运算符 \pm \times \div \cdot \cap \cup \geq \leq \neq \approx \equiv 求和:\sum_1^n:
求积 $\prod$ :
一重积分 $\int$ \int_a^b f(x)dx
二重积分 $\iint$ \iint_{\Omega}f(x,y)dxdy
三重积分 $\iiint$ \iiint_{\Omega}f(x,y,z)dxdydz]
曲线积分 $\oint$
微分算子 $\mathrm{d}x{d}y$ :
极限:lim_{x \to \infty}: limx→∞
\prod:∏,\int:∫,,,\bigcup:?,\bigcap:?
矩阵 : \begin{matrix}…\end{matrix}
$
\begin{matrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{matrix}
$
$X=\left(
\begin{matrix}
x_{11} & x_{12} & \cdots & x_{1d}\\
x_{21} & x_{22} & \cdots & x_{2d}\\
\vdots & \vdots & \ddots & \vdots\\
x_{m1} & x_{m2} & \cdots & x_{md}\\
\end{matrix}
\right)
=\left(
\begin{matrix}
x_1^T \\
x_2^T \\
\vdots\\
x_m^T \\
\end{matrix}
\right)
$
- 方程组
$
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
$
- 行列式
$
X=\left|
\begin{matrix}
x_{11} & x_{12} & \cdots & x_{1d}\\
x_{21} & x_{22} & \cdots & x_{2d}\\
\vdots & \vdots & \ddots & \vdots\\
x_{m1} & x_{m2} & \cdots & x_{md}\\
\end{matrix}
\right|
$
- 方程式
$J(\theta)=\frac1{2m}\sum_{i=0}(y^i-h_\theta(x^i))^2$
$E=mc^2$
- 分段函数
$
f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$
如果你什么都不会,没关系。因为我也只会用LaTex排版公式和套用几个模板。
人是灵活的,不会用Latex,就用在线编辑器
https://latex.91maths.com/
相关推荐
- 深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能
-
引言在现代应用程序中,数据的存储和处理变得愈发复杂多样。MySQL8.0引入了丰富的JSON相关函数,为我们提供了更灵活的数据存储和检索方式。本文将深入探讨MySQL8.0中的JSON...
- MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)
-
前言虽然MySQL很早就添加了Json类型,但是在业务开发过程中还是很少设计带这种类型的表。少不代表没有,当真正要对Json类型进行特定查询,修改,插入和优化等操作时,却感觉一下子想不起那些函数怎么使...
- MySQL的json查询之json_array(mysql json_search)
-
json_array顾名思义就是创建一个数组,实际的用法,我目前没有想到很好的使用场景。使用官方的例子说明一下吧。例一selectjson_array(1,2,3,4);json_array虽然单独...
- 头条创作挑战赛#一、LSTM 原理 长短期记忆网络
-
#头条创作挑战赛#一、LSTM原理长短期记忆网络(LongShort-TermMemory,LSTM)是一种特殊类型的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时面临的梯度...
- TensorBoard最全使用教程:看这篇就够了
-
机器学习通常涉及在训练期间可视化和度量模型的性能。有许多工具可用于此任务。在本文中,我们将重点介绍TensorFlow的开源工具套件,称为TensorBoard,虽然他是TensorFlow...
- 图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
-
本文约4600字,建议阅读10分钟本文介绍了图神经网络版本的对比。KolmogorovArnoldNetworks(KAN)最近作为MLP的替代而流行起来,KANs使用Kolmogorov-Ar...
- kornia,一个实用的 Python 库!(python kkb_tools)
-
大家好,今天为大家分享一个实用的Python库-kornia。Github地址:https://github.com/kornia/kornia/Kornia是一个基于PyTorch的开源计算...
- 图像分割掩码标注转YOLO多边形标注
-
Ultralytics团队付出了巨大的努力,使创建自定义YOLO模型变得非常容易。但是,处理大型数据集仍然很痛苦。训练yolo分割模型需要数据集具有其特定格式,这可能与你从大型数据集中获得的...
- [python] 向量检索库Faiss使用指北
-
Faiss是一个由facebook开发以用于高效相似性搜索和密集向量聚类的库。它能够在任意大小的向量集中进行搜索。它还包含用于评估和参数调整的支持代码。Faiss是用C++编写的,带有Python的完...
- 如何把未量化的 70B 大模型加载到笔记本电脑上运行?
-
并行运行70B大模型我们已经看到,量化已经成为在低端GPU(比如Colab、Kaggle等)上加载大型语言模型(LLMs)的最常见方法了,但这会降低准确性并增加幻觉现象。那如果你和你的朋友们...
- ncnn+PPYOLOv2首次结合!全网最详细代码解读来了
-
编辑:好困LRS【新智元导读】今天给大家安利一个宝藏仓库miemiedetection,该仓库集合了PPYOLO、PPYOLOv2、PPYOLOE三个算法pytorch实现三合一,其中的PPYOL...
- 人工智能——图像识别(人工智能图像识别流程)
-
概述图像识别(ImageRecognition)是计算机视觉的核心任务之一,旨在通过算法让计算机理解图像内容,包括分类(识别物体类别)、检测(定位并识别多个物体)、分割(像素级识别)等,常见的应用场...
- PyTorch 深度学习实战(15):Twin Delayed DDPG (TD3) 算法
-
在上一篇文章中,我们介绍了DeepDeterministicPolicyGradient(DDPG)算法,并使用它解决了Pendulum问题。本文将深入探讨TwinDelayed...
- 大模型中常用的注意力机制GQA详解以及Pytorch代码实现
-
分组查询注意力(GroupedQueryAttention)是一种在大型语言模型中的多查询注意力(MQA)和多头注意力(MHA)之间进行插值的方法,它的目标是在保持MQA速度的同时...
- pytorch如何快速创建具有特殊意思的tensor张量?
-
专栏推荐正文我们通过值可以看到torch.empty并没有进行初始化创建tensor并进行随机初始化操作,常用rand/rand_like,randint正态分布(0,1)指定正态分布的均值还有方差i...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
-
- 深入解析 MySQL 8.0 JSON 相关函数:解锁数据存储的无限可能
- MySQL的Json类型个人用法详解(mysql json类型对应java什么类型)
- MySQL的json查询之json_array(mysql json_search)
- 头条创作挑战赛#一、LSTM 原理 长短期记忆网络
- TensorBoard最全使用教程:看这篇就够了
- 图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
- kornia,一个实用的 Python 库!(python kkb_tools)
- 图像分割掩码标注转YOLO多边形标注
- [python] 向量检索库Faiss使用指北
- 如何把未量化的 70B 大模型加载到笔记本电脑上运行?
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)