数据清洗之pandas看后你就会用了
liuian 2025-01-10 15:15 15 浏览
Pandas是Python一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作。Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,Pandas处理上千万的数据是易如反掌的,excel做不了的,pandas可以,excel能做的,pandas也可以;总而言之,谁用谁知道。
import pandas as pd
import numpy as np
df = pd.read_csv('2022-01-29跌幅前十.csv')
df
纬德信息\t-19.44\t城地香江\t-10.02\t安妮股份\t-10.01\t金财互联\t-10.01\t亚联发展\t-9.98\t吉大正元\t-9.98\t浙数文化\t-9.18\t证通电子\t-9.09\t新炬网络\t-7.49\t浪潮软件\t-7.24\t
通过df的info可以看出来,在上篇获取数据中,没有对数据处理,在这儿就需要整理出符合matplotlib要求的格式;这里需要先将数据转换成DataFrame形式
d = pd.DataFrame(df.columns[0].split('\t'))
有心的你看到了,凡是名称的索引都是偶数,涨跌幅度索引是奇数,我们需要根据这个规律提取出来符合要求的数据,这也涉及了数据变形的操作,后面会详细讲。
name = d[0][[i for i in range(0, 20, 2)]]
number = d[0][[i for i in range(1, 20, 2)]]
[[i for i in range(0, 20, 2)]]是python中的列表推导式,一种循环的写法,简捷高效,0是开始位,20是结束位,2是步长,range这三个参数的意思明白就好;现在这二条数据已经基本准备好了,为什么说基本呢?因为现在的数据是object,而在绘图时需要的是int(整型)或float(浮点),从上图中可以看出它们的dtype,我们转换一下
num2 = np.array(number, dtype=np.float16)
这是跌幅前十名的数据,按照这个操作涨幅前十名
dt = pd.read_csv('2022-01-29涨幅前十.csv')
zf = pd.DataFrame(dt.columns[0].split('\t'))
name1 = zf[0][[i for i in range(0, 20, 2)]]
number1 = zf[0][[i for i in range(1, 21, 2)]]
num1 = np.array(number1, dtype=np.float16)
上面为了详细展示操作过程,看着有点多,其实就5行代码就完成了所有的准备工作;
下面说说pandas中基本的增、删、改、查和数据的变形
上图是给原数据中增加一列,值为1,也可增加多列,写成列表的格式就行
也可以用drop删除,这里要注意,用del只能一次删除一列drop却可以用列表进行多列操作
上面说了按列删除,下面说下按行删除,为了方便后面展示,重新生成一个新表
# 将第二列中的0和1改成hello,world
d2['col1'] = d2['col1'].replace({0:'hello',1:'world'})
# 将col2列中的1改成ok
d2.iloc[0,2] = 'ok' # 其中iloc[0, 2]是高级索引或切片索引,0是指第一列,2是指第一列第三行,当然也可以按行标签和列标签提取相应位置的数据,不过这样写简便
d2
将表中的hello全部替换成1,这里的厉害之处在于replace中可以用正则表达式,这一点excel坐导弹也追不上
d2.replace('hello','1')
通过上面的增、删、改,其实已经用了“查”,就是用切片索引查找,其中loc是按行标签查找,而iloc是可以行列结合
下面再说说行列数据变形相关的操作
ascending=0是改变默认的排序,1是默认值
行列变形的stack函数
变形后恢复默认索引状态
修改列名
原始的图形是
现在将d4再变形回去d3的样式
通过pivot函数达成目的,离原始还差一步,就是A的消失
现在已经实现了行列的互换,假如想将c列排到第一列去,需要一是将列标写成列表,二是再替换,具体的看图
到此,基本上可以用pandas处理日常工作了,下篇文章再说一下如何生成字典,以及将int变成object;
我们现在获取数据就可以直接用pandas读取和保存了,这样比上篇文章中说的简单直接还高效,这样的好处就是循环之类的就省了,从html.json()这儿开始,忘记的可以看下上篇文章
dataframe = pd.DataFrame(html.json()['list'])
dataframe.to_csv(title[spe])
二句代码解决问题,同时还保证了格式的统一和完整;下篇文章开始绘图的制作,欢迎留言或私信交流
相关推荐
- vue怎么和后端php配合
-
Vue和后端PHP可以通过HTTP请求进行配合。首先,前端Vue可以使用axios库或者Vue自带的$http对象来发送HTTP请求到后端PHP接口。通过axios库发送POST、GET、PUT等请求...
- Ansible最佳实践之 AWX 使用 Ansible 与 API 通信
-
#头条创作挑战赛#API简单介绍红帽AWX提供了一个类似Swagger的RESTful风格的Web服务框架,可以和awx直接交互。使管理员和开发人员能够在webUI之外控制其...
- PHP8.3 错误处理革命:Exception 与 Error 全面升级
-
亲爱的小伙伴,好久没有发布信息了,最近学习了一下PHP8.3的升级,都有哪些优化和提升,把学到的分享出来给需要的小伙伴充下电。技术段位:高可用性必修目标收益:精准错误定位+异常链路追踪适配场景...
- 使用 mix/vega + mix/db 进行现代化的原生 PHP 开发
-
最近几年在javascript、golang生态中游走,发现很多npm、gomod的优点。最近回过头开发MixPHPV3,发现composer其实一直都是一个非常优秀的工具,但是...
- 15 个非常好用的 JSON 工具
-
JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...
- php8环境原生实现rpc
-
大数据分布式架构盛行时代的程序员面试,常常遇到分布式架构,RPC,本文的主角是RPC,英文名为RemoteProcedureCall,翻译过来为“远程过程调用”。主流的平台中都支持各种远程调用技术...
- 「PHP编程」如何搭建私有Composer包仓库?
-
在前一篇文章「PHP编程」如何制作自己的Composer包?中,我们已经介绍了如何制作自己的composer包,以及如何使用composer安装自己制作的composer包。不过,这其中有...
- WAF-Bypass之SQL注入绕过思路总结
-
过WAF(针对云WAF)寻找真实IP(源站)绕过如果流量都没有经过WAF,WAF当然无法拦截攻击请求。当前多数云WAF架构,例如百度云加速、阿里云盾等,通过更改DNS解析,把流量引入WAF集群,流量经...
- 【推荐】一款 IDEA 必备的 JSON 处理工具插件 — Json Assistant
-
JsonAssistant是基于IntelliJIDEs的JSON工具插件,让JSON处理变得更轻松!主要功能完全支持JSON5JSON窗口(多选项卡)选项卡更名移动至主编辑器用...
- 技术分享 | 利用PHAR协议进行PHP反序列化攻击
-
PHAR(“PhpARchive”)是PHP中的打包文件,相当于Java中的JAR文件,在php5.3或者更高的版本中默认开启。PHAR文件缺省状态是只读的,当我们要创建一个Phar文件需要修改...
- php进阶到架构之swoole系列教程(一)windows安装swoole
-
目录概述安装Cygwin安装swoolephp7进阶到架构师相关阅读概述这是关于php进阶到架构之swoole系列学习课程:第一节:windows安装swoole学习目标:在Windows环境将搭建s...
- go 和 php 性能如何进行对比?
-
PHP性能很差吗?每次讲到PHP和其他语言间的性能对比,似乎都会发现这样一个声音:单纯的性能对比没有意义,主要瓶颈首先是数据库,其次是业务代码等等。好像PHP的性能真的不能单独拿出来讨论似的。但其实一...
- Linux(CentOS )手动搭建LNMP(Linux+Nginx+Mysql+PHP)坏境
-
CentOS搭建LNMP(Linux+Nginx+Mysql+PHP)坏境由于网上各种版本新旧不一,而且Linux版本也不尽相同,所以自己写一遍根据官网的提示自己手动搭建过程。看官方文档很重要,永远...
- json和jsonp区别
-
JSON和JSONP虽然只有一个字母的差别,但其实他们根本不是一回事儿:JSON是一种数据交换格式,而JSONP是一种非官方跨域数据交互协议。一个是描述信息的格式,一个是信息传递的约定方法。一、...
- web后端正确的返回JSON
-
在web开发中,前端和后端发生数据交换传输现在最常见的形式就是异步ajax交互,一般返回给js都是json,如何才是正确的返回呢?前端代码想要获取JSON数据代码如下:$.get('/user-inf...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)