pandas学习笔记-条件筛选(二)
liuian 2025-01-10 15:14 21 浏览
在上一集中,我们学习了基本的筛选技术。今天,我们将学习如何使用`.query()`和`.apply()`方法进行更高级的筛选。
条件筛选进阶概述
随着数据集的复杂性增加,我们需要更强大的工具来帮助我们筛选数据。Pandas提供了`.query()`和`.apply()`这样的方法,让我们能够以更灵活、更强大的方式进行筛选。
使用.query()方法
python代码
# 使用.query()筛选工资高于平均值的员工
df_query = df.query('Salary > @df["Salary"].mean()')
# .query()方法允许我们使用python代码原生的变量,并且使筛选条件的表达更加直观。
使用.apply()方法
python代码
# 假设我们要根据一个自定义函数的计算结果来筛选数据
def is_top_earner(row):
return row['Salary'] > df['Salary'].mean()
# 使用.apply()和自定义函数筛选
df_apply = df.apply(is_top_earner, axis=1)
# .apply()方法允许我们对DataFrame的行或列应用一个函数,根据函数的返回值来筛选数据。
综合案例分析
假设我们有一个包含员工信息的DataFrame df,数据如下:
python代码
import pandas as pd
import numpy as np
# 示例数据
data = {
'EmployeeID': [101, 102, 103, 104, 105, 106],
'Name': ['John Doe', 'Jane Smith', 'Bob Johnson', 'Alice Davis', 'Mike Brown', 'Sophia Lee'],
'Department': ['Engineering', 'HR', 'Marketing', 'Engineering', 'Sales', 'Engineering'],
'Age': [34, 29, 45, 31, 28, 40],
'Salary': [70000, 50000, 60000, 75000, 48000, 80000]
}
df = pd.DataFrame(data)
步骤1:使用.query()方法
我们想要筛选出工资高于平均工资的员工。
python代码
# 使用.query()方法筛选
average_salary = df['Salary'].mean()
high_earners = df.query("Salary > @average_salary")
print(high_earners)
步骤2:使用.apply()方法
假设我们要根据员工的工龄(假设工龄为当前年份减去入职年份)来筛选员工,工龄超过10年的员工我们认为是资深员工。
python代码
# 假设当前年份为2023
current_year = 2023
# 使用.apply()方法筛选资深员工
senior_employees = df.apply(lambda x: current_year - x['EmployeeID'] // 100 > 10, axis=1)
print(senior_employees)
步骤3:结合.apply()和自定义函数
我们可以定义一个自定义函数来判断员工是否为高薪。
python代码
# 定义自定义函数判断是否为高薪
def is_high_earner(salary):
return salary > 75000
# 使用.apply()和自定义函数筛选高薪员工
high_earning_employees = df.apply(lambda x: is_high_earner(x['Salary']), axis=1)
print(high_earning_employees)
步骤4:筛选并展示结果
使用.query()和.apply()筛选出的数据可以用于进一步的分析或可视化。
python代码
# 使用.query()筛选高薪员工
high_earning_employees_query = df.query("Salary > 75000")
print(high_earning_employees_query)
步骤5:应用更改
将筛选后的数据保存到新的DataFrame或CSV文件中。
python代码
# 将筛选后的高薪员工数据保存到新的CSV文件
high_earning_employees_query.to_csv('high_earning_employees.csv', index=False)
性能考量
在进行筛选时,我们也需要考虑代码的性能。`.query()`通常比`.apply()`更快,因为它进行了优化以处理向量化操作。但是,`.apply()`提供了更大的灵活性,尤其是在处理复杂的自定义逻辑时。
总结与预告
今天我们学习了如何使用Pandas的`.query()`和`.apply()`方法进行高级筛选。这些方法提供了筛选数据的强大工具,使我们能够更加精确地控制数据的筛选过程。如果大家对条件筛选有任何疑问,或者在实践中遇到问题,请在评论区留言,我会尽快解答。
- 上一篇:Java基础教程:k8s快速入门
- 下一篇:Pandas入门-5.数据筛选
相关推荐
- 总结下SpringData JPA 的常用语法
-
SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...
- 解决JPA在多线程中事务无法生效的问题
-
在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...
- PostgreSQL系列(一):数据类型和基本类型转换
-
自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...
- 基于MCP实现text2sql
-
目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...
- ORACLE 错误代码及解决办法
-
ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...
- 从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%
-
作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...
- 010:通过 MCP PostgreSQL 安全访问数据
-
项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...
- 发现了一个好用且免费的SQL数据库工具(DBeaver)
-
缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...
- 微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅
-
IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...
- 数据库管理工具Navicat Premium最新版发布啦
-
管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...
- 50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?
-
北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...
- 揭秘:一条SQL语句的执行过程是怎么样的?
-
数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...
- 各家sql工具,都闹过哪些乐子?
-
相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...
- 详解PG数据库管理工具--pgadmin工具、安装部署及相关功能
-
概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...
- Enpass for Mac(跨平台密码管理软件)
-
还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)