Java8 Stream流API使用简介
liuian 2025-01-09 14:26 39 浏览
概述
本文介绍Java8 Streams从创建到并行执行的实际使用例子,涉及 Java8(lambda表达式、Optional、方法引用)和流API的基本知识。
流创建
有很多方法可以创建不同源的流实例。一旦创建,实例将不会修改其源,因此允许从单个源创建多个实例。
- 空流
Stream<String> streamEmpty = Stream.empty();常在创建时使用empty方法,以避免对没有元素的流返回null:
public Stream<String> streamOf(List<String> list) {
return list == null || list.isEmpty() ? Stream.empty() : list.stream();
}- 集合流
可以创建任何类型的集合(集合、列表、数组)的流:
Collection<String> collection = Arrays.asList("a", "b", "c");
Stream<String> streamOfCollection = collection.stream();
Stream<String> streamOfArray = Stream.of("a", "b", "c");还可以从现有数组或数组的一部分创建流:
String[] arr = new String[]{"a", "b", "c"};
Stream<String> streamOfArrayFull = Arrays.stream(arr);
Stream<String> streamOfArrayPart = Arrays.stream(arr, 1, 3);- Stream.builder()
当使用builder时,应该在语句的右侧部分额外指定所需的类型,否则build方法将创建Stream<Object>的实例:
Stream<String> streamBuilder =
Stream.<String>builder().add("a").add("b").add("c").build();- Stream.generate()
generate方法接受Supplier<T>来生成元素。由于生成的流是无限的,开发人员应该指定所需的大小:
Stream<String> streamGenerated =
Stream.generate(() -> "element").limit(10);- Stream.iterate()
Stream<Integer> streamIterated = Stream.iterate(40, n -> n + 2).limit(20);结果流的第一个元素是iterate方法的第一个参数。创建之后的每个元素时,指定的函数将应用于前一个元素。在上面的例子中,第二个元素将是42。
Primitives基元流
Java8提供了从三种基本类型创建流的可能性:int、long和double。由于Stream<T>是一个泛型接口,并且无法将基元用作泛型的类型参数,因此创建了三个新的特殊接口:IntStream、LongStream和DoubleStream。
使用该接口可以减少不必要的自动装箱,从而提高效率:
IntStream intStream = IntStream.range(1, 3);
LongStream longStream = LongStream.rangeClosed(1, 3);range(int startInclusive,int endExclusive)方法创建从第一个参数到第二个参数的有序流。它以等于1的步长递增后续元素的值。结果不包括最后一个参数,它只是序列的一个上界。
rangeClosed(int startInclusive,int endInclusive)方法执行相同的操作,但只有一个区别,即包括第二个元素。我们可以使用这两种方法来生成三种类型的基元流中的任何一种。
自Java 8以来,Random类提供了一系列用于生成基元流的方法。例如,以下代码创建了一个DoubleStream,它有三个元素:
Random random = new Random();
DoubleStream doubleStream = random.doubles(3);- 字符串流
在String类的chars()方法的帮助下,我们还可以使用String作为创建流的源。由于JDK中没有CharStream的接口,因此我们使用IntStream来表示字符流。
IntStream streamOfChars = "abc".chars();以下示例根据指定的RegEx将字符串分解为子字符串:
Stream<String> streamOfString =
Pattern.compile(", ").splitAsStream("a, b, c");- 文件流
此外,Java NIO类Files允许我们通过line()方法生成文本文件的Stream<String>。文本的每一行都成为流的一个元素:
Path path = Paths.get("C:\\file.txt");
Stream<String> streamOfStrings = Files.lines(path);
Stream<String> streamWithCharset =
Files.lines(path, Charset.forName("UTF-8"));引用流
记住Java 8流是不能重用的,这一点非常重要。
Stream<String> stream =
Stream.of("a", "b", "c").filter(element -> element.contains("b"));
Optional<String> anyElement = stream.findAny();
Optional<String> firstElement = stream.findFirst();尝试重用相同的引用将触发IllegalStateException:这种行为是合乎逻辑的。流的设计是为了以函数样式将有限的操作序列应用于元素源,而不是存储元素。
因此,为了使以前的代码正常工作,应该进行一些更改:
List<String> elements =
Stream.of("a", "b", "c").filter(element -> element.contains("b"))
.collect(Collectors.toList());
Optional<String> anyElement = elements.stream().findAny();
Optional<String> firstElement = elements.stream().findFirst();懒调用
使用流的正确和最方便的方法是通过流管道,它是流源、中间操作和终端操作的链:
List<String> list = Arrays.asList("abc1", "abc2", "abc3");
long size = list.stream().skip(1)
.map(element -> element.substring(0, 3)).sorted().count();中间操作是惰性的。这意味着只有在终端操作执行需要时才会调用它们。
例如,让我们调用方法wasCalled(),它每次调用时都会增加一个内部计数器:
private long counter;
private void wasCalled() {
counter++;
}现在,让我们从操作filter()中调用方法wasCalled():
List<String> list = Arrays.asList(“abc1”, “abc2”, “abc3”);
counter = 0;
Stream<String> stream = list.stream().filter(element -> {
wasCalled();
return element.contains("2");
});由于我们有三个元素的源,可以假设filter()方法将被调用三次,计数器变量的值将为3。然而,运行此代码根本不会更改计数器,它仍然为零,因此filter()方法甚至没有被调用过一次,缺少终端操作的原因。
让我们通过添加map()操作和终端操作findFirst()来稍微重写一下这段代码。我们还将在日志记录的帮助下添加跟踪方法调用顺序的功能:
Optional<String> stream = list.stream().filter(element -> {
log.info("filter() was called");
return element.contains("2");
}).map(element -> {
log.info("map() was called");
return element.toUpperCase();
}).findFirst();生成的日志显示,我们调用了filter()方法两次,调用了map()方法一次。这是因为管道是垂直执行的。
在示例中,流的第一个元素不满足过滤器的谓词。然后,调用了第二个元素的filter()方法,通过管道进入map()方法,findFirst()操作只满足一个元素,因此调用结束返回。
因此,在这个特定的例子中,惰性调用使我们能够避免两个方法调用,一个用于filter(),另一个用于map()。
执行顺序
从性能的角度来看,正确的顺序是流管道中链操作最重要的方面之一:
long size = list.stream().map(element -> {
wasCalled();
return element.substring(0, 3);
}).skip(2).count();执行此代码将使计数器的值增加3,这意味着我们调用了流的map()方法三次,但返回的值是1。因此,生成的流只有一个元素,而无缘无故地执行了三次中的两次昂贵的map()操作。
如果我们改变skip()和map()方法的顺序,计数器将只增加一个。因此,我们将只调用map()方法一次:
long size = list.stream().skip(2).map(element -> {
wasCalled();
return element.substring(0, 3);
}).count();这就引出了以下规则:减少流大小的中间操作应该放在应用于每个元素的操作之前。因此,我们需要将skip()、filter()和distinct()等方法保留在流管道的顶部。
reduce()流聚合
流API默认提供了一些流聚合的操作:count()、max(),min()和sum(),如果需要自定义聚合,可以使用reduce()和collect()。
reduce具有以下参数:
- identity:累加器的初始值,如果流为空并且没有任何可累加的内容,则为默认值;
- accumulator累加器:一个指定元素聚合逻辑的函数。由于累加器为每一个步骤创建一个新值,所以新值的数量等于流的大小,只有最后一个值是有用的。
- combiner组合器:一个聚合累加器结果的函数。只在并行模式下调用组合器。
现在,让我们看看这三种方法的作用:
OptionalInt reduced =
IntStream.range(1, 4).reduce((a, b) -> a + b);reduced = 6 (1 + 2 + 3)
int reducedTwoParams =
IntStream.range(1, 4).reduce(10, (a, b) -> a + b);reducedTwoParams = 16 (10 + 1 + 2 + 3)
int reducedParams = Stream.of(1, 2, 3)
.reduce(10, (a, b) -> a + b, (a, b) -> {
log.info("combiner was called");
return a + b;
});结果将与前面的示例(16)相同,这意味着没有调用合并器。要使组合器工作,流应该是并行的:
int reducedParallel = Arrays.asList(1, 2, 3).parallelStream()
.reduce(10, (a, b) -> a + b, (a, b) -> {
log.info("combiner was called");
return a + b;
});结果:36,组合器被调用了两次:流的每个元素添加到累加器运行三次,并且是并行进行的。因此,它们具有(10+1=11;10+2=12;10+3=13;)。现在组合器可以合并这三个结果。它需要两次迭代(12+13=25;25+11=36)。
collect()收集器
流API已经为大多数常见操作创建了预定义的收集器。
List<Product> productList = Arrays.asList(new Product(23, "potatoes"),
new Product(14, "orange"), new Product(13, "lemon"),
new Product(23, "bread"), new Product(13, "sugar"));将流转换为集合:
List<String> collectorCollection =
productList.stream().map(Product::getName).collect(Collectors.toList());还原为字符串:
String listToString = productList.stream().map(Product::getName)
.collect(Collectors.joining(", ", "[", "]"));joiner()方法可以有1到3个参数(分隔符、前缀、后缀)。
处理流中所有数字元素的平均值:
int summingPrice = productList.stream()
.collect(Collectors.summingInt(Product::getPrice));方法averagingXX()、summingXX()和summaryzingXX()可以处理基元(int、long、double)及其包装类(Integer、long、double)。这些方法的一个更强大的功能是提供映射。因此,开发人员不需要在collect()方法之前使用额外的map()操作。
IntSummaryStatistics statistics = productList.stream()
.collect(Collectors.summarizingInt(Product::getPrice));结果将是一个与此“IntSummaryStatistics{count=5,sum=86,min=13,average=17,max=23}”相同的字符串
根据指定的函数对流的元素进行分组:
Map<Integer, List<Product>> collectorMapOfLists = productList.stream()
.collect(Collectors.groupingBy(Product::getPrice));根据一些谓词将流的元素分组:
Map<Boolean, List<Product>> mapPartioned = productList.stream()
.collect(Collectors.partitioningBy(element -> element.getPrice() > 15));推进收集器时可执行附加转换:
Set<Product> unmodifiableSet = productList.stream()
.collect(Collectors.collectingAndThen(Collectors.toSet(),
Collections::unmodifiableSet));如果出于某种原因应该创建自定义收集器,那么最简单的方法是使用收集器类型的of()方法。
Collector<Product, ?, LinkedList<Product>> toLinkedList =
Collector.of(LinkedList::new, LinkedList::add,
(first, second) -> {
first.addAll(second);
return first;
});
LinkedList<Product> linkedListOfPersons =
productList.stream().collect(toLinkedList);并行流
Java 8引入了一种以函数风格实现并行的方法。API允许我们创建并行流,以并行模式执行操作。当流的源是Collection或数组时,可以借助parallelStream()方法实现:
Stream<Product> streamOfCollection = productList.parallelStream();
boolean isParallel = streamOfCollection.isParallel();
boolean bigPrice = streamOfCollection
.map(product -> product.getPrice() * 12)
.anyMatch(price -> price > 200);如果流的源不是Collection或数组,则应使用parallel()方法:
IntStream intStreamParallel = IntStream.range(1, 150).parallel();
boolean isParallel = intStreamParallel.isParallel();在后台,Stream API自动使用ForkJoin框架并行执行操作。默认情况下,将使用公共线程池。
在并行模式下使用流时,请避免阻塞操作。当任务需要类似的执行时间时,最好使用并行模式。如果一项任务的持续时间比另一项长得多,则可能会减慢整个应用程序的工作流程。
并行模式下的流可以使用sequencial()方法转换回顺序模式:
IntStream intStreamSequential = intStreamParallel.sequential();
boolean isParallel = intStreamSequential.isParallel();结论
流API是一套功能强大但易于理解的工具,用于处理元素序列。如果使用得当,它可以减少大量代码,创建更可读的程序,并提高应用程序的生产力。在应用程序中,不要让实例化的流未被使用,避免导致内存泄漏。
相关推荐
- 搭建一个20人的办公网络(适用于20多人的小型办公网络环境)
-
楼主有5台机上网,则需要一个8口路由器,组网方法如下:设备:1、8口路由器一台,其中8口为LAN(局域网)端口,一个WAN(广域网)端口,价格100--400元2、网线N米,这个你自己会看了:)...
- 笔记本电脑各种参数介绍(笔记本电脑各项参数新手普及知识)
-
1、CPU:这个主要取决于频率和二级缓存,频率越高、二级缓存越大,速度越快,现在的CPU有三级缓存、四级缓存等,都影响相应速度。2、内存:内存的存取速度取决于接口、颗粒数量多少与储存大小,一般来说,内...
- 汉字上面带拼音输入法下载(字上面带拼音的输入法是哪个)
-
使用手机上的拼音输入法打成汉字的方法如下:1.打开手机上的拼音输入法,在输入框中输入汉字的拼音,例如“nihao”。2.根据输入法提示的候选词,选择正确的汉字。例如,如果输入“nihao”,输...
- xpsp3安装版系统下载(windowsxpsp3安装教程)
-
xpsp3纯净版在采用微软封装部署技术的基础上,结合作者的实际工作经验,融合了许多实用的功能。它通过一键分区、一键装系统、自动装驱动、一键设定分辨率,一键填IP,一键Ghost备份(恢复)等一系列...
- 没有备份的手机数据怎么恢复
-
手机没有备份恢复数据方法如下1、使用数据线将手机与电脑连接好,在“我的电脑”中可以看到手机的盘符。 2、将手机开启USB调试模式。在手机设置中找到开发者选项,然后点击“开启USB调试模式”。 3、...
- 电脑怎么激活windows11专业版
-
win11专业版激活方法有多种,以下提供两种常用的激活方式:方法一:使用激活密钥激活。在win11桌面上右键点击“此电脑”,选择“属性”选项。进入属性页面后,点击“更改产品密钥或升级windows”。...
- 华为手机助手下载官网(华为手机助手app下载专区)
-
华为手机助手策略调整,已不支持从应用市场下载手机助手,目前华为手机助手是需要在电脑上下载或更新手机助手到最新版本,https://consumer.huawei.com/cn/support/his...
- 光纤线断了怎么接(宽带光纤线断了怎么接)
-
宽带光纤线断了可以重接,具体操作方法如下:1、光纤连接的时候要根据束管内,同色相连,同芯相连,按顺序进行连接,由大到小。一般有三种连接方法,分别是熔接、活动连接和机械连接。2、连接的时候要开剥光缆,抛...
- win7旗舰版和专业版区别(win7旗舰版跟专业版)
-
1、功能区别:Win7旗舰版比专业版多了三个功能,分别是Bitlocker、BitlockerToGo和多语言界面; 2、用途区别:旗舰版的功能是所有版本中最全最强大的,占用的系统资源,...
- 万能连接钥匙(万能wifi连接钥匙下载)
-
1、首先打开wifi万能钥匙软件,若手机没有开启WLAN,就根据软件提示打开WLAN开关;2、打开WLAN开关后,会显示附近的WiFi,如果知道密码,可点击相应WiFi后点击‘输入密码’连接;3、若不...
- 雨林木风音乐叫什么(雨林木风是啥)
-
雨林木风的创始人是陈年鑫先生。陈年鑫先生于1999年创立了雨林木风公司,其初衷是为满足中国市场对高品质、高性能电脑的需求。在陈年鑫先生的领导下,雨林木风以技术创新、产品质量和客户服务为核心价值,不断推...
- aics6序列号永久序列号(aics6破解序列号)
-
关于AICS6这个版本,虽然是比较久远的版本,但是在功能上也是十分全面和强大的,作为一名平面设计师的话,AICS6的现有的功能已经能够应付几乎所有的设计工作了……到底AICC2019的功能是不是...
- 手机可以装电脑系统吗(手机可以装电脑系统吗怎么装)
-
答题公式1:手机可以通过数据线或无线连接的方式给电脑装系统。手机安装系统需要一定的技巧和软件支持,一般需要通过数据线或无线连接的方式与电脑连接,并下载相应的软件和系统文件进行安装。对于大部分手机用户来...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
