百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

NVIDIA Jetson Nano 2GB 系列文章(56):启动器CLI指令集与配置文件

liuian 2025-01-01 21:35 26 浏览

在开始使用 TAO 模型训练工具之前,我们必须先对其操作原理有个基础的理解,因为这套工具能支持 30 多种神经网络的深度学习,并且横跨视觉类与对话类两种不同领域,究竟是如何做到的?

前面介绍的内容中提过,在 TAO 工具使用两个不同的 Docker 容器,去面对视觉类与对话类的模型训练,分别是基于 Tensorflow 与 PyTorch 框架。

不过英伟达将复杂的调用工作进行高度的抽象化处理,以启动器 CLI 指令作为统一的执行接口,并且为每个神经网络提供对应的配置文件组,透过指令集与配置文件的组合,将操作的逻辑变得非常简单,开发人员只要熟悉这套指令集,就能非常轻松地驾驭所有 TAO 支持的神经网络,进行高效率的模型训练任务。

因此在操作 TAO 工具之前,首先得对 CLI 指令集与配置文件有个初步的了解。


  • 启动器CLI指令集:

这个指令集的语法非常简单,主要是下面三部分所组成:

tao <task> <sub-task> <args>


1. task:包括 TAO 所支持的神经网络算法以及基础的控制指令,主要分为以下三类:

  • 视觉类神经网络:augment、bpnet、classification、dssd、emotionnet、efficientdet、fpenet、gazenet、gesturenet、heartratenet、lprnet、mask_rcnn、multitask_classification、retinanet、ssd、unet、yolo_v3、yolo_v4、yolo_v4_tiny、converter、detectnet_v2、faster_rcnn等
  • 对话类神经网络:speech_to_text、speech_to_text_citrinet、text_classification、question_answering、token_classification、intent_slot_classification、punctuation_and_capitalization、spectro_gen、vocoder、action_recognition、n_gram等
  • 控制指令类:包括 list、stop、info 三个功能指令,分别执行列出、终止处理启动器的进程,以及显示 TAO 的基础信息。

上面所有的信息,可以用 tao info --verbose 指令,查询到不同版本容器所支持的神经网络类型。


当我们单纯执行 tao 的时候,就会进入对应的容器里,例如:

  • tao ssd 会进入视觉类的容器,这里是 tao-toolkit-tf:v3.21.11-tf1.15.5-py3
  • tao n_gram 进入对话类容器,这里是 tao-toolkit-lm:v3.21.08-py3


2. sub-task与args:主要是指 TAO 所支持的神经网络算法(task)而不同,最简单的方法就是执行 tao--help 去查询个别 task 后面所需要的。例如:

  • 执行 tao ssd --help 会显示以下信息:大部分视觉类的参数是类似
  • 执行 tao n_gram --help 会显示以下信息:大部分对话类参数是类似


以下6种指令是所有模型都具备的功能:

  • dataset_convert:将数据集转换成指定格式
  • evaluate:模型评估
  • export:导出模型
  • inference:推理识别
  • prune:修剪模型
  • train:训练模型


到这里应该能够感受到这个 CLI 指令集的便利之处,开发人员只要好好记住这组指令,不需要撰写任何 C++ 或 Python 代码,甚至不需要了解任何一个神经网络的结构与算法,就能非常轻松地面对这么多种复杂的模型训练任务。


  • 视觉类神经网络配置文件:

这里需要透过 TAO 提供的范例来说明配置文件的细节,这里以视觉类的范例为主,请执行下列指令下载范例文件:

wget --content-disposition 
https://api.ngc.nvidia.com/v2/resources/nvidia/tao/cv_samples/versions/v1.3.0/zip -O cv_samples_v1.3.0.zip
unzip -u cv_samples_v1.3.0.zip  -d ./cv_samples_v1.3.0
rm -rf cv_samples_v1.3.0.zip && cd ./cv_samples_v1.3.0

在 cv_samples_v1.3.0 文件夹里有 20+ 个子目录,每个子文件夹就对应一个神经网络,下面都有个别的 specs 子目录,里面就存放对应的配置文件。


每个项目应该是由不同的技术人员所处理,在文件格式与命名方式也不尽相同,大部分是 .txt 纯文件格式,有些则使用 .yaml 或 .json 格式,因此需要针对个别项目,去深入了解每个配置文件里的各项参数。


下面是 TAO 视觉类模型训练工具的工作流图,每个项目里的配置文件,都是为不同阶段的任务提供所需要的参数。


这里以英伟达发展的 detectnet_v2 神经网络作为范例,里面的配置文件内容比较完整,包括以下 7 个文件:

  • detectnet_v2_tfrecords_kitti_trainval.txt
  • detectnet_v2_train_resnet18_kitti.txt
  • detectnet_v2_retrain_resnet18_kitti.txt
  • detectnet_v2_retrain_resnet18_kitti_qat.txt
  • detectnet_v2_inference_kitti_etlt_qat.txt
  • detectnet_v2_inference_kitti_tlt.txt
  • detectnet_v2_inference_kitti_etlt.txt


这些文件是配合整个执行流程的步骤:

1. 格式转换:由于这个训练的容器是基于 Tensorflow 框架,因此执行训练前需要先将数据集转换成 tf_record 格式,就会用到 detectnet_v2_tfrecords_kitti_trainval.txt 配置文件。其他项目里 xxx_tfrecords_kitti_xxx.txt 主要就是作为这个用途。


2. 训练模型:所有项目里的 xxx_train_xxx.txt 文件,都是该项目进行第一次训练时所需要配置文件,不过每个项目的配置中都不尽相同,以下列出 4 个项目提供参考:

这里的参数设定,是整个 TAO 训练模型过程中技术含量最高的环节,我们所能修改的部分大概就是“training_config”组里的”batch_size_per_gpu”与“num_epochs”这两个参数,以及确认“dataset_config”组里的每一个“target_class_mapping”对应是否正确。

其他参数的调整是需要对个别神经网络的结构预与算法有足够了解,如果没有把握的话,建议就使用英伟达已经优化过的参数。


3. 评估模型:也使用前面一个配置文件。如果不满意评估结果(例如 mAP 低于 0.5),可以试着加大 num_epochs,或者从头检查数据集的图像与标注;如果满意结果的话,就可以继续往下执行。


4. 修剪模型:TAO 使用比较简单的调整阈值(threshold),而不改变其他参数


5. 模型再训练:这个步骤用到的 xxx_retrain_xxx.txt 配置文件,与第一次训练使用的配置文件中的最大不同点,在于“pretrained_model_file”的部分,第一次训练使用 NGC 下载的预训练模型,而再训练的部分是使用步骤 4 修剪步骤所生成的模型,其他设定值是一样的。


6. 评估再训练的模型:与步骤 3 相同。如果对评估结果并不满意,请回到步骤 4 重复进行;如果感到满意,就能接续往下执行推理识别,验证模型的效果。


后面的推理验证与导出模型的步骤,留在实际项目执行的时候再做说明。到此应该能清楚,在 TAO 模型训练阶段,需要的就是 xxx_tfrecords_xxx.txt、xxx_train_xxx.txt 与 xxx_retrain_xxx.txt 这三个配置文件,后面两个文件的内容几乎一样,只有调用的预训练模型不一样,这样就能让事情变得更加单纯。


整个 TAO 训练工具的内容,主要就是围绕着 CLI 指令集与配置文件的组合处理,如此一来,开发人员只要掌握这两个部分,就能轻松驾驭大部分的模型训练任务。

相关推荐

2023年最新微信小程序抓包教程(微信小程序 抓包)

声明:本公众号大部分文章来自作者日常学习笔记,部分文章经作者授权及其他公众号白名单转载。未经授权严禁转载。如需转载,请联系开百。请不要利用文章中的相关技术从事非法测试。由此产生的任何不良后果与文...

测试人员必看的软件测试面试文档(软件测试面试怎么说)

前言又到了毕业季,我们将会迎来许多需要面试的小伙伴,在这里呢笔者给从事软件测试的小伙伴准备了一份顶级的面试文档。1、什么是bug?bug由哪些字段(要素)组成?1)将在电脑系统或程序中,隐藏着的...

复活,视频号一键下载,有手就会,长期更新(2023-12-21)

视频号下载的话题,也算是流量密码了。但也是比较麻烦的问题,频频失效不说,使用方法也难以入手。今天,奶酪就来讲讲视频号下载的新方案,更关键的是,它们有手就会有用,最后一个方法万能。实测2023-12-...

新款HTTP代理抓包工具Proxyman(界面美观、功能强大)

不论是普通的前后端开发人员,还是做爬虫、逆向的爬虫工程师和安全逆向工程,必不可少会使用的一种工具就是HTTP抓包工具。说到抓包工具,脱口而出的肯定是浏览器F12开发者调试界面、Charles(青花瓷)...

使用Charles工具对手机进行HTTPS抓包

本次用到的工具:Charles、雷电模拟器。比较常用的抓包工具有fiddler和Charles,今天讲Charles如何对手机端的HTTS包进行抓包。fiddler抓包工具不做讲解,网上有很多fidd...

苹果手机下载 TikTok 旧版本安装包教程

目前苹果手机能在国内免拔卡使用的TikTok版本只有21.1.0版本,而AppStore是高于21.1.0版本,本次教程就是解决如何下载TikTok旧版本安装包。前期准备准备美区...

【0基础学爬虫】爬虫基础之抓包工具的使用

大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到难全方位覆盖,特设【0基础学爬...

防止应用调试分析IP被扫描加固实战教程

防止应用调试分析IP被扫描加固实战教程一、概述在当今数字化时代,应用程序的安全性已成为开发者关注的焦点。特别是在应用调试过程中,保护应用的网络安全显得尤为重要。为了防止应用调试过程中IP被扫描和潜在的...

一文了解 Telerik Test Studio 测试神器

1.简介TelerikTestStudio(以下称TestStudio)是一个易于使用的自动化测试工具,可用于Web、WPF应用的界面功能测试,也可以用于API测试,以及负载和性能测试。Te...

HLS实战之Wireshark抓包分析(wireshark抓包总结)

0.引言Wireshark(前称Ethereal)是一个网络封包分析软件。网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark使用WinPCAP作为接口,直接...

信息安全之HTTPS协议详解(加密方式、证书原理、中间人攻击 )

HTTPS协议详解(加密方式、证书原理、中间人攻击)HTTPS协议的加密方式有哪些?HTTPS证书的原理是什么?如何防止中间人攻击?一:HTTPS基本介绍:1.HTTPS是什么:HTTPS也是一个...

Fiddler 怎么抓取手机APP:抖音、小程序、小红书数据接口

使用Fiddler抓取移动应用程序(APP)的数据接口需要进行以下步骤:首先,确保手机与计算机连接在同一网络下。在计算机上安装Fiddler工具,并打开它。将手机的代理设置为Fiddler代理。具体方...

python爬虫教程:教你通过 Fiddler 进行手机抓包

今天要说说怎么在我们的手机抓包有时候我们想对请求的数据或者响应的数据进行篡改怎么做呢?我们经常在用的手机手机里面的数据怎么对它抓包呢?那么...接下来就是学习python的正确姿势我们要用到一款强...

Fiddler入门教程全家桶,建议收藏

学习Fiddler工具之前,我们先了解一下Fiddler工具的特点,Fiddler能做什么?如何使用Fidder捕获数据包、修改请求、模拟客户端向服务端发送请求、实施越权的安全性测试等相关知识。本章节...

fiddler如何抓取https请求实现手机抓包(100%成功解决)

一、HTTP协议和HTTPS协议。(1)HTTPS协议=HTTP协议+SSL协议,默认端口:443(2)HTTP协议(HyperTextTransferProtocol):超文本传输协议。默认...