NVIDIA Jetson Nano 2GB 系列文章(56):启动器CLI指令集与配置文件
liuian 2025-01-01 21:35 44 浏览
在开始使用 TAO 模型训练工具之前,我们必须先对其操作原理有个基础的理解,因为这套工具能支持 30 多种神经网络的深度学习,并且横跨视觉类与对话类两种不同领域,究竟是如何做到的?
前面介绍的内容中提过,在 TAO 工具使用两个不同的 Docker 容器,去面对视觉类与对话类的模型训练,分别是基于 Tensorflow 与 PyTorch 框架。
不过英伟达将复杂的调用工作进行高度的抽象化处理,以启动器 CLI 指令作为统一的执行接口,并且为每个神经网络提供对应的配置文件组,透过指令集与配置文件的组合,将操作的逻辑变得非常简单,开发人员只要熟悉这套指令集,就能非常轻松地驾驭所有 TAO 支持的神经网络,进行高效率的模型训练任务。
因此在操作 TAO 工具之前,首先得对 CLI 指令集与配置文件有个初步的了解。
- 启动器CLI指令集:
这个指令集的语法非常简单,主要是下面三部分所组成:
tao <task> <sub-task> <args>1. task:包括 TAO 所支持的神经网络算法以及基础的控制指令,主要分为以下三类:
- 视觉类神经网络:augment、bpnet、classification、dssd、emotionnet、efficientdet、fpenet、gazenet、gesturenet、heartratenet、lprnet、mask_rcnn、multitask_classification、retinanet、ssd、unet、yolo_v3、yolo_v4、yolo_v4_tiny、converter、detectnet_v2、faster_rcnn等
- 对话类神经网络:speech_to_text、speech_to_text_citrinet、text_classification、question_answering、token_classification、intent_slot_classification、punctuation_and_capitalization、spectro_gen、vocoder、action_recognition、n_gram等
- 控制指令类:包括 list、stop、info 三个功能指令,分别执行列出、终止处理启动器的进程,以及显示 TAO 的基础信息。
上面所有的信息,可以用 tao info --verbose 指令,查询到不同版本容器所支持的神经网络类型。
当我们单纯执行 tao 的时候,就会进入对应的容器里,例如:
- tao ssd 会进入视觉类的容器,这里是 tao-toolkit-tf:v3.21.11-tf1.15.5-py3
- tao n_gram 进入对话类容器,这里是 tao-toolkit-lm:v3.21.08-py3
2. sub-task与args:主要是指 TAO 所支持的神经网络算法(task)而不同,最简单的方法就是执行 tao--help 去查询个别 task 后面所需要的。例如:
- 执行 tao ssd --help 会显示以下信息:大部分视觉类的参数是类似
- 执行 tao n_gram --help 会显示以下信息:大部分对话类参数是类似
以下6种指令是所有模型都具备的功能:
- dataset_convert:将数据集转换成指定格式
- evaluate:模型评估
- export:导出模型
- inference:推理识别
- prune:修剪模型
- train:训练模型
到这里应该能够感受到这个 CLI 指令集的便利之处,开发人员只要好好记住这组指令,不需要撰写任何 C++ 或 Python 代码,甚至不需要了解任何一个神经网络的结构与算法,就能非常轻松地面对这么多种复杂的模型训练任务。
- 视觉类神经网络配置文件:
这里需要透过 TAO 提供的范例来说明配置文件的细节,这里以视觉类的范例为主,请执行下列指令下载范例文件:
wget --content-disposition
https://api.ngc.nvidia.com/v2/resources/nvidia/tao/cv_samples/versions/v1.3.0/zip -O cv_samples_v1.3.0.zip
unzip -u cv_samples_v1.3.0.zip -d ./cv_samples_v1.3.0
rm -rf cv_samples_v1.3.0.zip && cd ./cv_samples_v1.3.0在 cv_samples_v1.3.0 文件夹里有 20+ 个子目录,每个子文件夹就对应一个神经网络,下面都有个别的 specs 子目录,里面就存放对应的配置文件。
每个项目应该是由不同的技术人员所处理,在文件格式与命名方式也不尽相同,大部分是 .txt 纯文件格式,有些则使用 .yaml 或 .json 格式,因此需要针对个别项目,去深入了解每个配置文件里的各项参数。
下面是 TAO 视觉类模型训练工具的工作流图,每个项目里的配置文件,都是为不同阶段的任务提供所需要的参数。
这里以英伟达发展的 detectnet_v2 神经网络作为范例,里面的配置文件内容比较完整,包括以下 7 个文件:
- detectnet_v2_tfrecords_kitti_trainval.txt
- detectnet_v2_train_resnet18_kitti.txt
- detectnet_v2_retrain_resnet18_kitti.txt
- detectnet_v2_retrain_resnet18_kitti_qat.txt
- detectnet_v2_inference_kitti_etlt_qat.txt
- detectnet_v2_inference_kitti_tlt.txt
- detectnet_v2_inference_kitti_etlt.txt
这些文件是配合整个执行流程的步骤:
1. 格式转换:由于这个训练的容器是基于 Tensorflow 框架,因此执行训练前需要先将数据集转换成 tf_record 格式,就会用到 detectnet_v2_tfrecords_kitti_trainval.txt 配置文件。其他项目里 xxx_tfrecords_kitti_xxx.txt 主要就是作为这个用途。
2. 训练模型:所有项目里的 xxx_train_xxx.txt 文件,都是该项目进行第一次训练时所需要配置文件,不过每个项目的配置中都不尽相同,以下列出 4 个项目提供参考:
这里的参数设定,是整个 TAO 训练模型过程中技术含量最高的环节,我们所能修改的部分大概就是“training_config”组里的”batch_size_per_gpu”与“num_epochs”这两个参数,以及确认“dataset_config”组里的每一个“target_class_mapping”对应是否正确。
其他参数的调整是需要对个别神经网络的结构预与算法有足够了解,如果没有把握的话,建议就使用英伟达已经优化过的参数。
3. 评估模型:也使用前面一个配置文件。如果不满意评估结果(例如 mAP 低于 0.5),可以试着加大 num_epochs,或者从头检查数据集的图像与标注;如果满意结果的话,就可以继续往下执行。
4. 修剪模型:TAO 使用比较简单的调整阈值(threshold),而不改变其他参数
5. 模型再训练:这个步骤用到的 xxx_retrain_xxx.txt 配置文件,与第一次训练使用的配置文件中的最大不同点,在于“pretrained_model_file”的部分,第一次训练使用 NGC 下载的预训练模型,而再训练的部分是使用步骤 4 修剪步骤所生成的模型,其他设定值是一样的。
6. 评估再训练的模型:与步骤 3 相同。如果对评估结果并不满意,请回到步骤 4 重复进行;如果感到满意,就能接续往下执行推理识别,验证模型的效果。
后面的推理验证与导出模型的步骤,留在实际项目执行的时候再做说明。到此应该能清楚,在 TAO 模型训练阶段,需要的就是 xxx_tfrecords_xxx.txt、xxx_train_xxx.txt 与 xxx_retrain_xxx.txt 这三个配置文件,后面两个文件的内容几乎一样,只有调用的预训练模型不一样,这样就能让事情变得更加单纯。
整个 TAO 训练工具的内容,主要就是围绕着 CLI 指令集与配置文件的组合处理,如此一来,开发人员只要掌握这两个部分,就能轻松驾驭大部分的模型训练任务。
- 上一篇:写给前端工程师的Flutter详细教程
- 下一篇:Conda入门教程
相关推荐
- MySQL慢查询优化:从explain到索引,DBA手把手教你提升10倍性能
-
数据库性能是应用系统的生命线,而慢查询就像隐藏在系统中的定时炸弹。某电商平台曾因一条未优化的SQL导致订单系统响应时间从200ms飙升至8秒,最终引发用户投诉和订单流失。今天我们就来系统学习MySQL...
- 一文读懂SQL五大操作类别(DDL/DML/DQL/DCL/TCL)的基础语法
-
在SQL中,DDL、DML、DQL、DCL、TCL是按操作类型划分的五大核心语言类别,缩写及简介如下:DDL(DataDefinitionLanguage,数据定义语言):用于定义和管理数据库结构...
- 闲来无事,学学Mysql增、删,改,查
-
Mysql增、删,改,查1“增”——添加数据1.1为表中所有字段添加数据1.1.1INSERT语句中指定所有字段名语法:INSERTINTO表名(字段名1,字段名2,…)VALUES(值1...
- 数据库:MySQL 高性能优化规范建议
-
数据库命令规范所有数据库对象名称必须使用小写字母并用下划线分割所有数据库对象名称禁止使用MySQL保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)数据库对象的命名要能做到见名识意,...
- 下载工具合集_下载工具手机版
-
迅雷,在国内的下载地位还是很难撼动的,所需要用到的地方还挺多。缺点就是不开会员,软件会限速。EagleGet,全能下载管理器,支持HTTP(S)FTPMMSRTSP协议,也可以使用浏览器扩展检测...
- mediamtx v1.15.2 更新详解:功能优化与问题修复
-
mediamtxv1.15.2已于2025年10月14日发布,本次更新在功能、性能优化以及问题修复方面带来了多项改进,同时也更新了部分依赖库并提升了安全性。以下为本次更新的详细内容:...
- 声学成像仪:泄露监测 “雷达” 方案开启精准防控
-
声学成像仪背景将声像图与阵列上配装的摄像实所拍的视频图像以透明的方式叠合在一起,就形成了可直观分析被测物产生状态。这种利用声学、电子学和信息处理等技术,变换成人眼可见的图像的技术可以帮助人们直观地认识...
- 最稳存储方案:两种方法将摄像头接入威联通Qu405,录像不再丢失
-
今年我家至少被4位邻居敲门,就是为了查监控!!!原因是小区内部监控很早就停止维护了,半夜老有小黄毛掰车门偷东西,还有闲的没事划车的,车主损失不小,我家很早就配备监控了,人来亮灯有一定威慑力,不过监控设...
- 离岗检测算法_离岗检查内容
-
一、研发背景如今社会许多岗位是严禁随意脱离岗位的,如塔台、保安室、监狱狱警监控室等等,因为此类行为可能会引起重大事故,而此类岗位监督管理又有一定困难,因此促生了智能视频识别系统的出现。二、产品概述及工...
- 消防安全通道占用检测报警系统_消防安全通道占用检测报警系统的作用
-
一、产品概述科缔欧消防安全通道占用检测报警系统,是创新行业智能监督管理方式、完善监管部门动态监控及预警预报体系的信息化手段,是实现平台远程监控由“人为监控”向“智能监控”转变的必要手段。产品致力于设...
- 外出住酒店、民宿如何使用手机检测隐藏的监控摄像头
-
最近,一个家庭在他们的民宿收到了一个大惊喜:客厅里有一个伪装成烟雾探测器的隐藏摄像头,监视着他们的一举一动。隐藏摄像头的存在如果您住在酒店或民宿,隐藏摄像头不应再是您的担忧。对于民宿,房东应报告所有可...
- 基于Tilera众核平台的流媒体流量发生系统的设计
-
曾帅,高宗彬,赵国锋(重庆邮电大学通信与信息工程学院,重庆400065)摘要:设计了一种基于Tilera众核平台高强度的流媒体流量发生系统架构,其主要包括:系统界面管理模块、服务承载模块和流媒体...
- 使用ffmpeg将rtsp流转流实现h5端播放
-
1.主要实现rtsp转tcp协议视频流播放ffmpeg下载安装(公认业界视频处理大佬)a、官网地址:www.ffmpeg.org/b、gitHub:github.com/FFmpeg/FFmp…c、推...
- 将摄像头视频流从Rtsp协议转为websocket协议
-
写在前面很多通过摄像头拿到的视频流格式都是Rtsp协议的,比如:海康威视摄像头。在现代的浏览器中,已经不支持直接播放Rtsp视频流,而且,海康威视提供的本身的webSdk3.3.0视频插件有很多...
- 华芸科技推出安全监控中心2.1 Beta测试版
-
全球独家支持hdmi在线实时监看摄像机画面,具单一、循环或同时监看四频道视频影像,可透过华芸专用红外线遥控器、airemote或是键盘鼠标进行操作,提供摄像机频道增购服务,满足用户弹性扩增频道需...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
