百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

pandas 常用函数清单 python中pandas用法

liuian 2024-12-20 17:20 114 浏览


文件读取

df = pd.read_csv(path='file.csv')
参数:header=None  用默认列名,0,1,2,3...
     names=['A', 'B', 'C'...] 自定义列名
     index_col='A'|['A', 'B'...]  给索引列指定名称,如果是多重索引,可以传list
     skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
     nrows=N 需要读取的行数,前N行
     chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
     sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
     skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
     converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)
     
dfjs = pd.read_json('file.json')  可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典

数据预处理

df.duplicated()           返回各行是否是上一行的重复行
df.drop_duplicates()      删除重复行,如果需要按照列过滤,参数选填['col1', 'col2',...]
df.fillna(0)              用实数0填充na
df.dropna()               axis=0|1  0-index 1-column
                          how='all'|'any' all-全部是NA才删  any-只要有NA就全删
del df['col1']            直接删除某一列              
df.drop(['col1',...], aixs=1)   删除指定列,也可以删除行                          
df.column = col_lst       重新制定列名
df.rename(index={'row1':'A'},   重命名索引名和列名
          columns={'col1':'A1'})  
df.replace(dict)          替换df值,前后值可以用字典表,{1:‘A’, '2':'B'}

def get_digits(str):
    m = re.match(r'(\d+(\.\d+)?)', str.decode('utf-8'))
    if m is not None:   
        return float(m.groups()[0])
    else:
        return 0
df.apply(get_digits)      DataFrame.apply,只获取小数部分,可以选定某一列或行
df['col1'].map(func)      Series.map,只对列进行函数转换

pd.merge(df1, df2, on='col1', 
         how='inner',sort=True) 合并两个DataFrame,按照共有的某列做内连接(交集),outter为外连接(并集),结果排序
         
pd.merge(df1, df2, left_on='col1', 
         right_on='col2')   df1 df2没有公共列名,所以合并需指定两边的参考列


pd.concat([sr1, sr2, sr3,...], axis=0) 多个Series堆叠成多行,结果仍然是一个Series
pd.concat([sr1, sr2, sr3,...], axis=1) 多个Series组合成多行多列,结果是一个DataFrame,索引取并集,没有交集的位置填入缺省值NaN
 
df1.combine_first(df2)   用df2的数据补充df1的缺省值NaN,如果df2有更多行,也一并补上

df.stack()              列旋转成行,也就是列名变为索引名,原索引变成多层索引,结果是具有多层索引的Series,实际上是把数据集拉长

df.unstack()            将含有多层索引的Series转换为DataFrame,实际上是把数据集压扁,如果某一列具有较少类别,那么把这些类别拉出来作为列
df.pivot()              实际上是unstack的应用,把数据集压扁

pd.get_dummies(df['col1'], prefix='key') 某列含有有限个值,且这些值一般是字符串,例如国家,借鉴位图的思想,可以把k个国家这一列量化成k列,每列用0、1表示

数据筛选

df.columns             列名,返回Index类型的列的集合
df.index               索引名,返回Index类型的索引的集合
df.shape               返回tuple,行x列
df.head(n=N)           返回前N条
df.tail(n=M)           返回后M条
df.values              值的二维数组,以numpy.ndarray对象返回
df.index               DataFrame的索引,索引不可以直接赋值修改
df.reindex(index=['row1', 'row2',...]
           columns=['col1', 'col2',...]) 根据新索引重新排序
df[m:n]                切片,选取m~n-1行
df[df['col1'] > 1]     选取满足条件的行
df.query('col1 > 1')   选取满足条件的行
df.query('col1==[v1,v2,...]') 
df.ix[:,'col1']        选取某一列
df.ix['row1', 'col2']  选取某一元素
df.ix[:,:'col2']       切片选取某一列之前(包括col2)的所有列
df.loc[m:n]            获取从m~n行(推荐)
df.iloc[m:n]           获取从m~n-1行
df.loc[m:n-1,'col1':'coln']   获取从m~n行的col1~coln列


sr=df['col']           取某一列,返回Series
sr.values              Series的值,以numpy.ndarray对象返回
sr.index               Series的索引,以index对象返回

数据运算与排序

df.T                   DataFrame转置
df1 + df2              按照索引和列相加,得到并集,NaN填充
df1.add(df2, fill_value=0) 用其他值填充
df1.add/sub//mul/div   四则运算的方法
df - sr                DataFrame的所有行同时减去Series
df * N                 所有元素乘以N
df.add(sr, axis=0)     DataFrame的所有列同时减去Series


sr.order()             Series升序排列
df.sort_index(aixs=0, ascending=True) 按行索引升序
df.sort_index(by=['col1', 'col2'...])  按指定列优先排序
df.rank()              计算排名rank值

数学统计

sr.unique             Series去重
sr.value_counts()     Series统计频率,并从大到小排序,DataFrame没有这个方法
sr.describe()         返回基本统计量和分位数

df.describe()         按各列返回基本统计量和分位数
df.count()            求非NA值得数量
df.max()              求最大值
df.min()              求最大值
df.sum(axis=0)        按各列求和
df.mean()             按各列求平均值
df.median()           求中位数
df.var()              求方差
df.std()              求标准差
df.mad()              根据平均值计算平均绝对利差
df.cumsum()           求累计和
sr1.corr(sr2)         求相关系数
df.cov()              求协方差矩阵
df1.corrwith(df2)     求相关系数

pd.cut(array1, bins)  求一维数据的区间分布
pd.qcut(array1, 4)    按指定分位数进行区间划分,4可以替换成自定义的分位数列表   

df['col1'].groupby(df['col2']) 列1按照列2分组,即列2作为key
df.groupby('col1')    DataFrame按照列1分组
grouped.aggreagte(func) 分组后根据传入函数来聚合
grouped.aggregate([f1, f2,...]) 根据多个函数聚合,表现成多列,函数名为列名
grouped.aggregate([('f1_name', f1), ('f2_name', f2)]) 重命名聚合后的列名
grouped.aggregate({'col1':f1, 'col2':f2,...}) 对不同的列应用不同函数的聚合,函数也可以是多个


df.pivot_table(['col1', 'col2'], 
               rows=['row1', 'row2'], 
               aggfunc=[np.mean, np.sum]
               fill_value=0,
               margins=True)  根据row1, row2对col1, col2做分组聚合,聚合方法可以指定多种,并用指定值替换缺省值
               
          
pd.crosstab(df['col1'], df['col2']) 交叉表,计算分组的频率

相关推荐

电脑最高配置是什么配置2025

一,2023最新主流电脑装机配置如下。二,处理器可以使用十二代的i512400或者i512490f,内存16gb双通道,显卡rtx3060,主板可以使用b660m或者h610m。三,如果十三代酷睿...

MySQL慢查询优化:从explain到索引,DBA手把手教你提升10倍性能

数据库性能是应用系统的生命线,而慢查询就像隐藏在系统中的定时炸弹。某电商平台曾因一条未优化的SQL导致订单系统响应时间从200ms飙升至8秒,最终引发用户投诉和订单流失。今天我们就来系统学习MySQL...

一文读懂SQL五大操作类别(DDL/DML/DQL/DCL/TCL)的基础语法

在SQL中,DDL、DML、DQL、DCL、TCL是按操作类型划分的五大核心语言类别,缩写及简介如下:DDL(DataDefinitionLanguage,数据定义语言):用于定义和管理数据库结构...

闲来无事,学学Mysql增、删,改,查

Mysql增、删,改,查1“增”——添加数据1.1为表中所有字段添加数据1.1.1INSERT语句中指定所有字段名语法:INSERTINTO表名(字段名1,字段名2,…)VALUES(值1...

数据库:MySQL 高性能优化规范建议

数据库命令规范所有数据库对象名称必须使用小写字母并用下划线分割所有数据库对象名称禁止使用MySQL保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)数据库对象的命名要能做到见名识意,...

下载工具合集_下载工具手机版

迅雷,在国内的下载地位还是很难撼动的,所需要用到的地方还挺多。缺点就是不开会员,软件会限速。EagleGet,全能下载管理器,支持HTTP(S)FTPMMSRTSP协议,也可以使用浏览器扩展检测...

mediamtx v1.15.2 更新详解:功能优化与问题修复

mediamtxv1.15.2已于2025年10月14日发布,本次更新在功能、性能优化以及问题修复方面带来了多项改进,同时也更新了部分依赖库并提升了安全性。以下为本次更新的详细内容:...

声学成像仪:泄露监测 “雷达” 方案开启精准防控

声学成像仪背景将声像图与阵列上配装的摄像实所拍的视频图像以透明的方式叠合在一起,就形成了可直观分析被测物产生状态。这种利用声学、电子学和信息处理等技术,变换成人眼可见的图像的技术可以帮助人们直观地认识...

最稳存储方案:两种方法将摄像头接入威联通Qu405,录像不再丢失

今年我家至少被4位邻居敲门,就是为了查监控!!!原因是小区内部监控很早就停止维护了,半夜老有小黄毛掰车门偷东西,还有闲的没事划车的,车主损失不小,我家很早就配备监控了,人来亮灯有一定威慑力,不过监控设...

离岗检测算法_离岗检查内容

一、研发背景如今社会许多岗位是严禁随意脱离岗位的,如塔台、保安室、监狱狱警监控室等等,因为此类行为可能会引起重大事故,而此类岗位监督管理又有一定困难,因此促生了智能视频识别系统的出现。二、产品概述及工...

消防安全通道占用检测报警系统_消防安全通道占用检测报警系统的作用

一、产品概述科缔欧消防安全通道占用检测报警系统,是创新行业智能监督管理方式、完善监管部门动态监控及预警预报体系的信息化手段,是实现平台远程监控由“人为监控”向“智能监控”转变的必要手段。产品致力于设...

外出住酒店、民宿如何使用手机检测隐藏的监控摄像头

最近,一个家庭在他们的民宿收到了一个大惊喜:客厅里有一个伪装成烟雾探测器的隐藏摄像头,监视着他们的一举一动。隐藏摄像头的存在如果您住在酒店或民宿,隐藏摄像头不应再是您的担忧。对于民宿,房东应报告所有可...

基于Tilera众核平台的流媒体流量发生系统的设计

曾帅,高宗彬,赵国锋(重庆邮电大学通信与信息工程学院,重庆400065)摘要:设计了一种基于Tilera众核平台高强度的流媒体流量发生系统架构,其主要包括:系统界面管理模块、服务承载模块和流媒体...

使用ffmpeg将rtsp流转流实现h5端播放

1.主要实现rtsp转tcp协议视频流播放ffmpeg下载安装(公认业界视频处理大佬)a、官网地址:www.ffmpeg.org/b、gitHub:github.com/FFmpeg/FFmp…c、推...

将摄像头视频流从Rtsp协议转为websocket协议

写在前面很多通过摄像头拿到的视频流格式都是Rtsp协议的,比如:海康威视摄像头。在现代的浏览器中,已经不支持直接播放Rtsp视频流,而且,海康威视提供的本身的webSdk3.3.0视频插件有很多...