STM32单片机的 Hard-Fault 硬件错误问题追踪与分析
liuian 2025-09-21 18:41 2 浏览
有过单片机开发经验的人应该都会遇到过硬件错误(Hard-Fault)的问题,对于这样的问题,有些问题比较容易查找,有些就查找起来很麻烦,甚至可能很久都找不到问题到底是出在哪里。
特别是有时候出现一次,后面观察中都很久没发现过,这样的情况是很头疼的。
对于这样的问题,我根据个人微浅的经验,分享一下怎么定位STM32出现Hard-Fault时问题所在的位置,方便尽快查找出问题所在。
我这边演示使用的是 STM32F407VET6,内核是 Cortex-M4,分析工具使用 MDK-Keil 。
1、了解STM32的寄存器组
工欲善其事必先利其器,在进行Hard-Fault的问题查找前,首先是要了解Arm Cortex 内核的寄存器组,方便进行调试。
1.1、Cortex-M3的通用寄存器组
从《Cortex-M3权威指南》中可以知道,Cortex-M3的通用寄存组有好几个,如下图:
1.1.1、通用目的寄存器 R0-R7
R0‐R7 被称为低组寄存器。所有指令都能访问它们。它们的字长全是 32 位,复位后的初始值是不可预料的。
1.1.2、通用目的寄存器 R8-R12
R8‐R12 被称为高组寄存器。只有很少的16位 Thumb 指令能访问它们,32位的指令则不受限制。它们也是 32 位字长,且复位后的初始值是不可预料的。
1.1.3、R13 — 堆栈指针(SP)
R13 这个寄存器是CM3内核中的堆栈指针,用于指向(保存)当前程序运行的堆栈地址。它支持两个堆栈 — 主堆栈指针(MSP)、进程堆栈指针(PSP)。
1)主堆栈指针(MSP)
MSP(主堆栈指针),是缺省的堆栈指针。当程序复位后(开始运行后),直到main函数运行时用的是MSP。
如果搭载了操作系统,线程发生调度之后,堆栈指针SP就指向了该堆栈的首地址。
2)进程堆栈指针(PSP)
PSP(进程堆栈指针),指向的是运行的线程首地址,即线程的堆栈地址。
补充:
Cortex‐M3 使用的是“向下生长的满栈”模型。堆栈指针 SP 指向最后一个被压入堆栈的 32位数值。在下一次压栈时,SP 先自减 4,再存入新的数值。
1.1.4、R14 — 连接寄存器(LR)
R14 用于保存所调用的程序的返回地址。简而言之就是保存程序跳转(子程序调用,中断跳转)后,准备执行的下一条指令的地址。它保存的内容可以归纳为两种:
1)保存子程序返回地址。比如上一个函数退出时的地址或者上一条执行结束后准备执行下一条的指令地址。
2)当异常发生时,异常模式的r14用来保存异常返回地址。
LR中的一些固定值出现的情况:
1.1.5、R15 — 程序计数器(PC)
保存的是当前正在取指的指令的地址(arm采用2级流水线,因此是当前正在执行指令的地址+8)。
因为 CM3 内部使用了指令流水线,读 PC 时返回的值是当前指令的地址+4。
1.2、Cortex‐M3 的特殊功能寄存器
这些特殊功能寄存器组只能使用专用的MSR和MRS指令访问,如下:
MRS <gp_reg>, <special_reg> ;读特殊功能寄存器的值到通用寄存器
MSR <special_reg>, <gp_reg> ;写通用寄存器的值到特殊功能寄存器
注意:这些特殊功能寄存器是没有地址的!
1.2.1、xPSR — 状态寄存器
通过 MRS/MSR 指令可以访问状态寄存器。
状态寄存器的解析如下:
一种说法:
另一种说法:
(1)标志位 —(N,Z,C,V,Q)
1)N:符号标志。结果为负数 = 1 ,否者 = 0
2)Z:零标志位。运算结果为0 = 1 ,否者 = 0
3)C:进位标志。运算结果有进位 = 1 ,否者 = 0
1>加法运算(包括比较指令 CNM):C=1:运算结果产生了进位时(无符号数溢 出);C=0:运算结果没有进位。
2>减法运算(包括比较指令 CMP):C=0:运算时产生了借位(无符号数溢出);C=1:没有借位。
3>对于包含移位操作的非加 / 减法运算指令,C 为移出值的最后一位。
4>对于其他的非加 / 减法运算指令,C 的值通常不变。
4)V:溢出标志。有溢出 = 1,否者 = 0
5)Q:DSP运算溢出标志。用于指示 DSP 运算指令是否发生了溢出。
(2)控制位 —(A,I,F,T)
A:中断禁止位(abort)
I:IRQ标志位。I=1表示禁止快速中断请求(IRQ)中断
F:FIQ标志位。F=1表示禁止外部中断请求(FIQ)中断
(3)模式位 — M[4:0]
1.2.2、中断屏蔽寄存器组
PRIMASK, FAULTMASK 和 BASEPRI 这三个寄存器用于控制异常的使能和除能。作用如下图所示:
1.2.3、控制寄存器(CONTROL)
控制寄存器用于定义特权级别,还用于选择当前使用哪个堆栈指针。如下图:
CONTROL[1]:
在 Cortex‐M3 的 handler 模式中,CONTROL[1]总是 0。在线程模式中则可以为 0 或 1。仅当处于特权级的线程模式下,此位才可写,其它场合下禁止写此位。改变处理器的模式也有其它的方式:在异常返回时,通过修改 LR 的位 2,也能实现模式切换。
CONTROL[0]:
仅当在特权级下操作时才允许写该位。一旦进入了用户级,唯一返回特权级的途径,就是触发一个(软)中断,再由服务例程改写该位。
CONTROL 寄存器也是通过 MRS 和 MSR 指令来操作的:
MRS R0, CONTROL
MSR CONTROL, R0
补充:
Cortex‐M3 支持 2 个模式和两个特权等级。
2个模式:handler模式、线程模式;
2个特权等级:用户级、特权级。
2、CM3系统的异常类型 & 可能原因
从权威指南上可以获知,CM3内核的系统异常有好几个,如下图:
2.1、Hard-Fault 错误发生时的有关寄存器
当 fault 发生时,首先要弄清楚的就是 fault 源,CM3中提供了相关的寄存器保存Hard-Fault发生的原因,相关的寄存器如下:
注意:不同的内核寄存器有些差异,不过也是有很多相似的,具体的要对照芯片内核手册去分析!
2.1.1、存储器管理 fault 状态寄存器(MFSR)
地址:0xE000_ED28
2.1.2、总线 fault 状态寄存器(BFSR)
地址:0xE000_ED29
2.1.3、用法 fault 状态寄存器(UFSR)
地址:0xE000_ED2A
2.1.4、硬 fault 状态寄存器
地址:0xE000_ED2C
2.1.5、调试 fault 状态寄存器(DFSR)
地址:0xE000_ED30
2.1.6、存储管理地址寄存器(MMAR)
地址:0xE000_ED34
2.1.7、总线 fault 地址寄存器(BFAR)
地址:0xE000_ED38
2.1.8、辅助 fault 地址寄存器(AFAR)
地址:0xE000_ED3C
2.2、Hard-Fault 时定位入栈PC
定位入栈 PC 的流程如下图:
2.3、发生Hard-Fault的可能原因
2.3.1、MemManage fault 的可能原因
2.3.2、总线 fault 的可能原因
2.3.3、用法 fault 的可能原因
2.3.4、硬 fault 的可能原因
2.3.5、调试 fault 的可能原因
3、使用 MDK-Keil 查找 Hard-Fault 的操作
当出现了Hard-Fault的错误的时候,可以使用MDK-Keil进行仿真,可以使用模拟调试仿真也可以在线调试。
(1)选择调试模式。选择调试方式如下图:
(2)进入Debug模式,选择寄存器窗口,便可以查看寄存器了。查看窗口如下:
(3)定位 Hard-Fault 问题的所在。
我这边通过打印输出寄存器的内容,可以获知硬件错误的相关信息,如下:
从图片中,可知道:
栈指针SP = 0x10004E78
连接寄存器LR = 0x08031C5D
程序计数器PC = 08031C80
(4)打开Disassembly窗口,如下图:
(5)在 Disassembly 窗口鼠标右键,选择 Show Disassembly at Adress...,如下图:
然后在弹出的输入框中输入连接寄存器(LR)的值,然后选择“Go To”,如下图:
“Go To”之后就可以定位到发生错误的时候要连接的地址,即出问题的时候所在的位置。下图是我的程序中出现错误的时候所定位到的位置,如下图:
(6)查看当前堆栈指针所在的位置,如下图:
至此,已经可以找到出现问题的位置,至于是什么错误导致的Hard-Fault,就要根据程序去分析了!
相关推荐
- 赶紧收藏!编程python基础知识,本文给你全部整理好了
-
想一起学习编程Python的同学,趁我粉丝少,可以留言、私信领编程资料~Python基础入门既然学习Python,那么至少得了解下这门编程语言,知道Python代码执行过程吧。Python的历...
- 创建绩效改进计划 (PIP) 的6个步骤
-
每个经理都必须与未能达到期望的员工抗衡,也许他们的表现下降了,他们被分配了新的任务并且无法处理它们,或者他们处理了自己的任务,但他们的行为对他人造成了破坏。许多公司转向警告系统,然后在这些情况下终止。...
- PI3K/AKT信号通路全解析:核心分子、上游激活与下游效应分子
-
PI3K/AKT/mTOR(PAM)信号通路是真核细胞中高度保守的信号转导网络,作用于促进细胞存活、生长和细胞周期进程。PAM轴上生长因子向转录因子的信号传导受到与其他多条信号通路的多重交叉相互作用的...
- 互联网公司要求签PIP,裁员连N+1都没了?
-
2021年刚画上句号,令无数互联网公司从业者闻风丧胆的绩效公布时间就到了,脉脉上已然炸了锅。阿里3.25、腾讯二星、百度四挡、美团绩效C,虽然名称五花八门,实际上都代表了差绩效。拿到差绩效,非但不能晋...
- Python自动化办公应用学习笔记3—— pip工具安装
-
3.1pip工具安装最常用且最高效的Python第三方库安装方式是采用pip工具安装。pip是Python包管理工具,提供了对Python包的查找、下载、安装、卸载的功能。pip是Python官方提...
- 单片机都是相通的_单片机是串行还是并行
-
作为一个七年的从业者,单片机对于我个人而言它是一种可编程的器件,现在长见到的电子产品中几乎都有单片机的身影,它们是以单片机为核心,根据不同的功能需求,搭建不同的电路,从8位的单片机到32位的单片机,甚...
- STM32F0单片机快速入门八 聊聊 Coolie DMA
-
1.苦力DMA世上本没有路,走的人多了,便成了路。世上本没有DMA,需要搬运的数据多了,便有了DMA。大多数同学应该没有在项目中用过这个东西,因为一般情况下也真不需要这个东西。在早期的单片机中...
- 放弃51单片机,直接学习STM32开发可能会面临的问题
-
学习51单片机并非仅仅是为了学习51本身,而是通过它学习一种方法,即如何仅仅依靠Datasheet和例程来学习一种新的芯片。51单片机相对较简单,是这个过程中最容易上手的选择,而AVR单片机则更为复杂...
- STM32串口通信基本原理_stm32串口原理图
-
通信接口背景知识设备之间通信的方式一般情况下,设备之间的通信方式可以分成并行通信和串行通信两种。并行与串行通信的区别如下表所示。串行通信的分类1、按照数据传送方向,分为:单工:数据传输只支持数据在一个...
- 单片机的程序有多大?_单片机的程序有多大内存
-
之前一直很奇怪一个问题,每次写好单片机程序之后,用烧录软件进行烧录时,能看到烧录文件也就是hex的文件大小:我用的单片机芯片是STM32F103C8T6,程序储存器(flash)只有64K。从...
- 解析STM32单片机定时器编码器模式及其应用场景
-
本文将对STM32单片机定时器编码器模式进行详细解析,包括介绍不同的编码器模式、各自的优缺点以及相同点和不同点的应用场景。通过阅读本文,读者将对STM32单片机定时器编码器模式有全面的了解。一、引言...
- 两STM32单片机串口通讯实验_两个32单片机间串口通信
-
一、实验思路连接两个STM32单片机的串口引脚,单片机A进行发送,单片机B进行接收。单片机B根据接收到单片机A的指令来点亮或熄灭板载LED灯,通过实验现象来验证是否通讯成功。二、实验器材两套STM32...
- 基于单片机的智能考勤机设计_基于51单片机的指纹考勤机
-
一、设计背景随着科技水平的不断发展,在这么一个信息化的时代,智能化信息处理已是提高效率、规范管理和客观审查的最有效途径。近几年来,国内很多公司都在加强对企业人员的管理,考勤作为企业的基础管理,是公司...
- STM32单片机详细教学(二):STM32系列单片机的介绍
-
大家好,今天给大家介绍STM32系列单片机,文章末尾附有本毕业设计的论文和源码的获取方式,可进群免费领取。前言STM32系列芯片是为要求高性能、低成本、低功耗的嵌入式应用设计的ARMCortexM...
- STM32单片机的 Hard-Fault 硬件错误问题追踪与分析
-
有过单片机开发经验的人应该都会遇到过硬件错误(Hard-Fault)的问题,对于这样的问题,有些问题比较容易查找,有些就查找起来很麻烦,甚至可能很久都找不到问题到底是出在哪里。特别是有时候出现一次,后...
- 一周热门
-
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)