百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

离线在docker镜像方式部署ragflow0.17.2

liuian 2025-09-18 22:49 2 浏览

经常项目上会出现不能连外网的情况,要怎么使用ragflow镜像部署呢,这里提供详细的步骤。

1、下载基础镜像

根据docker-compose-base.yml及docker-compose.yml中的image配置信息,下载所需要的基础服务镜像。

# 创建资源目录
mkdir -p /data/ragflow-offline/{docker-images,pip-packages}
cd /data/ragflow-offline


# 拉取并保存所有所需镜像
docker pull elasticsearch:8.11.3
#infinity和elasticsearch可以二选一下载
docker pull infiniflow/infinity:v0.6.0-dev3
#8+版本的mysql才支持向量数据
docker pull mysql:8.0.39
docker pull quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z
docker pull valkey/valkey:8

当使用sudo docker save时,虽然docker命令以root权限执行,但输出重定向操作(>)仍受当前用户目录权限限制。需要确保操作路径有足够权限,所以要先通过以下命令给足够的权限。

sudo chmod 777 /data/ragflow-offline/docker-images  # 临时放宽权限

再执行下面的保存命令

sudo docker save elasticsearch:8.11.3 > docker-images/elasticsearch-8.11.3.tar
sudo docker save infiniflow/infinity:v0.6.0-dev3 > docker-images/infinity-v0.6.0-dev3.tar
sudo docker save mysql:8.0.39 > docker-images/mysql-8.0.39.tar
sudo docker save quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z > docker-images/minio-2023-12-20.tar
sudo docker save valkey/valkey:8 > docker-images/valkey-8.tar


二、下载Ragflow

1、下载RagFlow,github上可能很慢,找一个gitee上的地址

cd /data
sudo git clone https://gitee.com/da_xu/ragflow.git
cd ragflow

2、配置python虚拟环境,如果已有请跳过

#安装venv
sudo apt install python3.12-venv
# 创建虚拟环境
sudo python3 -m venv .venv
#激活虚拟环境
source .venv/bin/activate
#安装所需要的依赖,可能会遇到很多版本问题,比如我是python3.12,要提示修改一些依赖版本
pip install -r requirements.txt

需要修改的依赖版本如下:

Pillow=10.3.0修改为11.1.0
torch=2.3.0修改为2.3.1

torch直接安装大概有800多M,看网络情况可能会超时,所以我直接选择先下载,下载地址:


https://download.pytorch.org/whl,找到你合适的版本

或者从阿里巴巴的镜像下载:
https://mirrors.aliyun.com/pypi/simple

然后使用以下命令安装

#下载
sudo wget https://download.pytorch.org/whl/cpu/torch-2.3.1%2Bcpu-cp312-cp312-linu
x_x86_64.whl#sha256=2141a6cb7021adf2f92a0fd372cfeac524ba460bd39ce3a641d30a561e41f69a
#安装torch
pip install torch-2.3.1+cpu-cp312-cp312-linux_x86_64.whl

以上可能会出现没有权限的问题,如下报错:

Installing collected packages: mpmath, typing-extensions, sympy, networkx, MarkupSafe, fsspec, filelock, jinja2, torch ERROR: Could not install packages due to an OSError: [Errno 13] Permission denied: '/data/ragflowd/.venv/lib/python3.12/site-packages/mpmath' Check the permissions.

解决方式如下:

# 进入虚拟环境上级目录
cd /data/ragflow

# 递归修改虚拟环境目录所有权(替换 <your_username> 为实际用户名)
sudo chown -R <your_username>:<your_group> .venv

# 赋予读写执行权限
sudo chmod -R 755 .venv

#或者如下操作
# 确保 /data/ragflow 目录允许当前用户操作
sudo chown -R $USER:$USER /data/ragflow
sudo chmod -R 755 /data/ragflow
#然后重新安装torch
pip install torch-2.3.1+cpu-cp312-cp312-linux_x86_64.whl

如果再遇到安装超时的问题,就采用以上方式先下载whl文件,然后单独安装,然后再安装其它的依赖。

比如又碰到160M的xgboost无法安装,如图操作:


其它比较大的whl下载:

sudo wget https://mirrors.aliyun.com/pypi/packages/67/ca/f42388aed0fddd64ade7493dbba36e1f534d4e6fdbdd355c6a90030ae028/nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl#sha256=694cf3879a206553cc9d7dbda76b13efaf610fdb70a50cba303de1b0d1530ac6

sudo wget https://mirrors.aliyun.com/pypi/packages/92/0f/a6eeabc9d4f3dffa52d629ba2aedce3c3953a49340a65ef49be85eb26cc1/Aspose.Slides-25.2.0-py3-none-manylinux1_x86_64.whl#sha256=d60bacea1fd43d09ae1351e7a1a1c0790ff80ca7955ceb95823e47f6b39f6b91

三、打包.venv中已下载的包到pip-packages文件夹中

# 在本地开发环境执行
cd /data/ragflow
sudo tar czvf /data/ragflow-offline/pip-packages/venv.tar.gz .venv/

四、离线环境部署步骤

1. 传输离线资源到目标服务器

将以下目录复制到目标服务器/data/ragflow_inner:

sudo mkdir /data/ragflow_inner
cd /data/ragflow_inner
sudo cp -r /data/ragflow-offline/docker-images/ .
sudo cp -r /data/ragflow-offline/pip-packages/ .

2. 加载Docker镜像

cd /data/ragflow_inner
for img in docker-images/*.tar; do
    docker load -i $img
done

3. 恢复Python虚拟环境

# 解压已有虚拟环境
sudo tar xzvf pip-packages/venv.tar.gz -C /data/ragflow_inner/

4、优化配置

新的docker-compose.yml

services:
  elasticsearch:
    image: elasticsearch:8.11.3
    pull_policy: never
    environment:
      - discovery.type=single-node
      - ES_JAVA_OPTS=-Xms4g -Xmx4g
    volumes:
      - /data/ragflow_inner/data/elasticsearch:/usr/share/elasticsearch/data
    ports:
      - "9200:9200"
    healthcheck:
      test: ["CMD-SHELL", "curl --silent --fail localhost:9200/_cluster/health || exit 1"]

  infinity:
    image: infiniflow/infinity:v0.6.0-dev3
		pull_policy: never
    ports:
      - "8088:8088"
    depends_on:
      elasticsearch:
        condition: service_healthy

  mysql:
    image: mysql:8.0.39
		pull_policy: never
    environment:
      MYSQL_ROOT_PASSWORD: ragflow@2024
      MYSQL_DATABASE: ragflow
    volumes:
      - /data/ragflow_inner/data/mysql:/var/lib/mysql
    ports:
      - "3306:3306"
    healthcheck:
      test: ["CMD", "mysqladmin", "ping", "-h", "localhost"]

  minio:
    image: quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z
    pull_policy: never
    command: server /data --console-address ":9001"
    volumes:
      - /data/ragflow_inner/data/minio:/data
    ports:
      - "9000:9000"
      - "9001:9001"
    environment:
      MINIO_ROOT_USER: ragflowadmin
      MINIO_ROOT_PASSWORD: ragflow@minio

  valkey:
    image: valkey/valkey:8
		pull_policy: never
    ports:
      - "6379:6379"
    volumes:
      - /data/ragflow_inner/data/valkey:/data

  server:
    image: infiniflow/ragflow:0.17.2
		pull_policy: never
    environment:
      DB_HOST: mysql
      DB_PORT: 3306
      DB_NAME: ragflow
      DB_USER: root
      DB_PASSWORD: ragflow@2024
      MINIO_ENDPOINT: minio:9000
      MINIO_ACCESS_KEY: ragflowadmin
      MINIO_SECRET_KEY: ragflow@minio
      HF_ENDPOINT: ""  # 显式声明空变量避免警告
      MACOS: ""        # 同上
    volumes:
      - /data/ragflow_inner/logs:/app/logs
      - /data/ragflow_inner/models:/app/models
      - /data/ragflow_inner/.venv:/opt/venv  # 挂载已有虚拟环境
    ports:
      - "8000:8000"
    depends_on:
      mysql:
        condition: service_healthy
      minio:
        condition: service_started
      valkey:
        condition: service_started

5. 启动服务

# 创建数据目录
sudo mkdir -p /data/ragflow_inner/data/{elasticsearch,mysql,minio,valkey}

# 设置文件权限
sudo chmod -R 777 /data/ragflow_inner/data

# 启动所有服务
cd /data/ragflow_inner/docker
sudo docker compose -f docker-compose.yml up -d

#验证服务,输出如下图
sudo docker compose ps
sudo docker exec -it ragflow-server bash
source .venv/bin/activate


相关推荐

eino v0.4.5版本深度解析:接口类型处理优化与错误机制全面升级

近日,eino框架发布了v0.4.5版本,该版本在错误处理、类型安全、流处理机制以及代理配置注释等方面进行了多项优化与修复。本次更新共包含6个提交,涉及10个文件的修改,由2位贡献者共同完成。本文将详...

SpringBoot异常处理_springboot异常注解

在SpringBoot中,异常处理是构建健壮、可维护Web应用的关键部分。良好的异常处理机制可以统一返回格式、提升用户体验、便于调试和监控。以下是SpringBoot中处理异常的完整指...

Jenkins运维之路(Jenkins流水线改造Day02-1-容器项目)

这回对线上容器服务器的流水线进行了一定的改造来满足目前线上的需求,还是会将所有的自动化脚本都放置到代码库中统一管理,我感觉一章不一定写的完,所以先给标题加了个-1,话不多说开干1.本次流水线的流程设计...

告别宕机!零基础搭建服务器监控告警系统!小白也能学会!

前言本文将带你从零开始,一步步搭建一个完整的服务器指标监控与邮件告警系统,使用的技术栈均为业界主流、稳定可靠的开源工具:Prometheus:云原生时代的监控王者,擅长指标采集与告警规则定义Node_...

httprunner实战接口测试笔记,拿走不谢

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试01开始安装跟创建项目pipinstallhttprunne...

基于JMeter的性能压测平台实现_jmeter压测方案

这篇文章已经是两年前写的,短短两年时间,JMeter开源应用技术的发展已经是翻天覆地,最初由github开源项目zyanycall/stressTestPlatform形成的这款测试工具也开始慢...

12K+ Star!新一代的开源持续测试工具!

大家好,我是Java陈序员。在企业软件研发的持续交付流程中,测试环节往往是影响效率的关键瓶颈,用例管理混乱、接口调试复杂、团队协作不畅、与DevOps流程脱节等问题都能影响软件交付。今天,给大家...

Spring Boot3 中分库分表之后如何合并查询

在当今互联网应用飞速发展的时代,数据量呈爆发式增长。对于互联网软件开发人员而言,如何高效管理和查询海量数据成为了一项关键挑战。分库分表技术应运而生,它能有效缓解单库单表数据量过大带来的性能瓶颈。而在...

离线在docker镜像方式部署ragflow0.17.2

经常项目上会出现不能连外网的情况,要怎么使用ragflow镜像部署呢,这里提供详细的步骤。1、下载基础镜像根据docker-compose-base.yml及docker-compose.yml中的i...

看,教你手写一个最简单的SpringBoot Starter

何为Starter?想必大家都使用过SpringBoot,在SpringBoot项目中,使用最多的无非就是各种各样的Starter了。那何为Starter呢?你可以理解为一个可拔插式...

《群星stellaris》军事基地跳出怎么办?解决方法一览

《群星stellaris》军事基地跳出情况有些小伙伴出现过这种情况,究竟该怎么解决呢?玩家“gmjdadk”分享的自己的解决方法,看看能不能解决。我用英文原版、德语、法语和俄语四个版本对比了一下,结果...

数据开发工具dbt手拉手教程-03.定义数据源模型

本章节介绍在dbt项目中,如何定义数据源模型。定义并引入数据源通过Extract和Load方式加载到仓库中的数据,可以使用dbt中的sources组件进行定义和描述。通过在dbt中将这些数据集(表)声...

docker compose 常用命令手册_docker-compose init

以下是DockerCompose常用命令手册,按生命周期管理、服务运维、构建配置、扩缩容、调试工具分类,附带参数解析、示例和关键说明,覆盖多容器编排核心场景:一、生命周期管理(核心命令...

RagFlow与DeepSeek R1本地知识库搭建详细步骤及代码实现

一、环境准备硬件要求独立显卡(建议NVIDIAGPU,8GB显存以上)内存16GB以上,推荐32GB(处理大规模文档时更高效)SSD硬盘(加速文档解析与检索)软件安装bash#必装组件Docker...

Docker Compose 配置更新指南_docker-compose配置

高效管理容器配置变更的最佳实践方法重启范围保留数据卷适用场景docker-composeup-d变更的服务常规配置更新--force-recreate指定/所有服务强制重建down→up流程...