Pandas处理数据太慢,来试试Polars吧
liuian 2025-09-06 06:25 3 浏览
很多人在学习数据分析的时候,肯定都会用到Pandas这个库,非常的实用!
从创建数据到读取各种格式的文件(text、csv、json),或者对数据进行切片和分割组合多个数据源,Pandas都能够很好的满足。
Pandas最初发布于2008年,使用Python、Cython和C编写的。是一个超级强大、快速和易于使用的Python库,用于数据分析和处理。
当然Pandas也是有不足之处的,比如不具备多处理器,处理较大的数据集速度很慢。
今天,小F就给大家介绍一个新兴的Python库——Polars。
使用语法和Pandas差不多,处理数据的速度却比Pandas快了不少。
一个是大熊猫,一个是北极熊~
GitHub地址:
https://github.com/ritchie46/polars
使用文档:
https://ritchie46.github.io/polars-book/
Polars是通过Rust编写的一个库,Polars的内存模型是基于Apache Arrow。
Polars存在两种API,一种是Eager API,另一种则是Lazy API。
其中Eager API和Pandas的使用类似,语法差不太多,立即执行就能产生结果。
而Lazy API就像Spark,首先将查询转换为逻辑计划,然后对计划进行重组优化,以减少执行时间和内存使用。
安装Polars,使用百度pip源。
# 安装polars
pip install polars -i https://mirror.baidu.com/pypi/simple/
安装成功后,开始测试,比较Pandas和Polars处理数据的情况。
使用某网站注册用户的用户名数据进行分析,包含约2600万个用户名的CSV文件,文件已上传。
import pandas as pd
df = pd.read_csv('users.csv')
print(df)
数据情况如下。
此外还使用了一个自己创建的CSV文件,用以数据整合测试。
import pandas as pd
df = pd.read_csv('fake_user.csv')
print(df)
得到结果如下。
首先比较一下两个库的排序算法耗时。
import timeit
import pandas as pd
start = timeit.default_timer()
df = pd.read_csv('users.csv')
df.sort_values('n', ascending=False)
stop = timeit.default_timer()
print('Time: ', stop - start)
-------------------------
Time: 27.555776743218303
可以看到使用Pandas对数据进行排序,花费了大约28s。
import timeit
import polars as pl
start = timeit.default_timer()
df = pl.read_csv('users.csv')
df.sort(by_column='n', reverse=True)
stop = timeit.default_timer()
print('Time: ', stop - start)
-----------------------
Time: 9.924110282212496
Polars只花费了约10s,这意味着Polars比Pandas快了2.7倍。
下面,我们来试试数据整合的效果,纵向连接。
import timeit
import pandas as pd
start = timeit.default_timer()
df_users = pd.read_csv('users.csv')
df_fake = pd.read_csv('fake_user.csv')
df_users.append(df_fake, ignore_index=True)
stop = timeit.default_timer()
print('Time: ', stop - start)
------------------------
Time: 15.556222308427095
使用Pandas耗时15s。
import timeit
import polars as pl
start = timeit.default_timer()
df_users = pl.read_csv('users.csv')
df_fake = pl.read_csv('fake_user.csv')
df_users.vstack(df_fake)
stop = timeit.default_timer()
print('Time: ', stop - start)
-----------------------
Time: 3.475433263927698
Polars居然最使用了约3.5s,这里Polars比Pandas快了4.5倍。
通过上面的比较,Polars在处理速度上表现得相当不错。
可以是大家在未来处理数据时,另一种选择~
当然,Pandas目前历时12年,已经形成了很成熟的生态,支持很多其它的数据分析库。
Polars则是一个较新的库,不足的地方还有很多。
如果你的数据集对于Pandas来说太大,对于Spark来说太小,那么Polars便是你可以考虑的一个选择。
最后在本次使用到的数据已上传,欢迎大家点赞、收藏、学习!
相关推荐
- PHPMAILER实现PHP发邮件功能php实例
-
这篇文章主要为大家详细介绍了PHPMAILER实现PHP发邮件功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下本文实例为大家分享了PHPMAILER实现PHP发邮件功能的具体代码,供大家参考,具...
- Cacti监控服务器配置教程(基于CentOS+Nginx+MySQL+PHP环境搭建)
-
具体案例:局域网内有两台主机,一台Linux、一台Windows,现在需要配置一台Cacti监控服务器对这两台主机进行监控环境说明:1、Linux主机操作系统:CentOS6.2IP地址:192.1...
- 如何在webmin中配置多个PHP版本_怎么配置php
-
请关注本头条号,每天坚持更新原创干货技术文章。如需学习视频,请在微信搜索公众号“智传网优”直接开始自助视频学习1.前言如何在webmin中配置多个PHP版本?本教程将会给您一些启示和操作案例。Web...
- 详解Drupal安装步骤_drools安装
-
DrupalDrupal是一个基于PHP语言编写的开源的内容管理系统(CMS:ContentManagementSystem),和Wordpress等CMS一样提供主题。在这里详细介绍一下安装Dr...
- nternet 信息服务(IIS) 升级为IIS 6.0
-
WindowsServer2003中Internet信息服务(IIS)升级为IIS6.0,其安全性更高。默认情况下,WindowsServer2003没有安装IIS6.0,要通过...
- Php JIT 使用详解_php的!
-
简介PHP8引入的JIT(Just-In-Time编译器)是该版本的一个重要性能特性,首次让PHP有了运行时即时编译的能力,从解释型语言迈向了“编译执行”的方向。什么是JIT?JIT...
- php 常见配置详解_php cgi配置
-
以下是PHP常见的配置项及其含义:error_reporting:设置错误报告级别,可以控制PHP显示哪些错误。例如,设置为E_ALL将显示所有错误,而设置为0将禁止显示任何错误。displa...
- 技巧:PHP版本怎样隐藏在Linux服务器
-
通常情况下,大多数安装web服务器软件的默认设置存在信息泄露,这些软件其中之一就是PHP。PHP是如今最流行的服务端html嵌入式语言之一。而在如今这个充满挑战的时代,有许多黑客会尝试发现你服务端的漏...
- PHP八大安全函数解析_php安全设置
-
在现代互联网中,我们经常要从世界各地的用户中获得输入数据。但是,我们都知道“永远不能相信那些用户输入的数据”。所以在各种的Web开发语言中,都会提供保证用户输入数据安全的函数。在PHP中,有些非常有...
- win7下apache+mysql+php安装配置_win7 mysql安装配置教程
-
一.首先下载好要用的apache版本:http://httpd.apache.org/download.cgimysql版本:http://dev.mysql.com/downloads/mys...
- phpmyadmin取消最大文件限制的更改解决方法
-
用phpmyadmin导入大数据库的时候出现:Nodatawasreceivedtoimport.Eithernofilenamewassubmitted,orthefi...
- 成功安装 Magento2.4.3最新版教程「技术干货」
-
外贸独立站设计公司xingbell.com经过多次的反复实验,最新版的magento2.4.3在oneinstack的环境下的详细安装教程如下:一.vps系统:LinuxCentOS7.7.19...
- CentOS、Nginx、PHP、MySQL的安装和配置记录
-
安装LNMP安装wget工具(可选) yuminstall-ywget下载Nginx wgethttp://www.atomicorp.com/installers/ato...
- PHP扩展开发之路(二)_php扩展直接执行php代码
-
昨日,Jamlee发布了PHP扩展开发之路(一),今日再来续集,哈哈,会不会更有趣呢!不说多的,直接来!##0x2helloworld!,你的第一个php扩展##阅读前必看小贴士:如果你不想在本...
- 比较常见类型漏洞讲解(一)_常见漏洞的特点及危害
-
这里介绍一些手动挖掘漏洞时比较容易找到的漏洞,根据不同类型的漏洞来介绍。演示准备目标主机:Metasploitable2攻击目标:目标主机的dvwa系统攻击机:KaliSessionId盗用不知道你们...
- 一周热门
-
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)