使用Plotly创建带有回归趋势线的时间序列可视化图表
liuian 2025-08-31 03:56 26 浏览
利用Pandas Groupby()、for loops和Plotly Scatter Graph对象结合Plotly Express趋势线创建带有回归趋势线的时间序列图。
数据
为了说明这是如何工作的,让我们假设我们有一个简单的数据集,它有一个datetime列和几个其他分类列。您感兴趣的是某一列("类型")在一段时间内("日期")的汇总计数。列可以是数字、类别或布尔值,但是这没关系。
注意:初始部分包含用于上下文和显示常见错误的代码,对于现成的解决方案,请参阅最后的GitHub的代码。
# Example Datadata = {'dates':
['2012-05-04',
'2012-05-04',
'2012-10-08'],
'types':
['a',
'a',
'z'],
'some_col':
['n',
'u',
'q']
}
df = pd.DataFrame.from_dict(data)分组、组织和分类
作为第一步,对数据进行分组、组织和排序,以根据所需度量的时间生成计数。在下面的代码块中,您可以在此阶段进行一些逐行转换。
# some housekeeping
df['dates'] = pd.to_datetime(df['dates'])
# subset
df = df[['dates', 'types']]
# groupby and aggregate
df = df.groupby([pd.Grouper(key='dates')]).agg('count')
# reset index
df = df.reset_index()# rename the types col (optional)
df = df.rename(columns={'types':'count'})为了清晰起见,这些步骤可以通过如下所示的方式使用一些额外的数据来完成。重要的是分组,然后按日期时间计数。
data = {'dates':
['2012-05-04',
'2012-05-04',
'2012-06-04',
'2012-08-08'],
'types':
['a',
'a',
'z',
'z',],
'some_col':
['n',
'u',
'q',
'']
}
df['dates'] = pd.to_datetime(df['dates'])
df = df[['dates', 'types']].groupby([pd.Grouper(key='dates')]).agg('count').reset_index()
df = df.rename(columns={'types:'count'})
print(df)
"""
dates count
1 2012-06-04 1
2 2012-08-08 1
0 2012-05-04 2
"""如果您注意到,前面的代码会按提供的日期分组。但是,如果您想按月或年进行分组呢?为了完成这个任务,使用Grouper参数的频率。
freq='M'
# or 'D' or 'Y'
df = df[['dates', 'types']].groupby([pd.Grouper(key='dates', freq=freq)]).agg('count').reset_index()
"""
dates count
2 2012-07-31 0
1 2012-06-30 1
3 2012-08-31 1
0 2012-05-31 2
"""
# group by the category being counted, or count in this case
group = df.groupby('count')
print(group)
"""
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7fc04f3b9cd0>
"""以上代码来自pandas的doc文档
在上面的代码块中,当使用每月"M"频率的Grouper方法时,请注意结果dataframe是如何为给定的数据范围生成每月行的。最后,作为DataFrame准备的最后一步,通过"计数"将数据分组——我们在处理Plotly之后会回到这个问题上。
Plotly Express 和 Plotly Graph Objects
在所有的图形库中,Plotly是可视化效果最好的了,但是他也存在一些问题。好的一方面是,Plotly能够产生出色的可视化效果,并与HTML集成。从不好的是,在单图和混合图之间切换时,语法可能会非常混乱。 例如,使用plotlyexpress(px),可以传递整个DataFrames作为参数; 但是,使用graphobjects(go)时,输入会更改,并且可能需要使用字典和Pandas系列而不是DataFrames。
为了熟悉用法我们先使用Plotly Express进行的简单绘图
import plotly_express as pxfig = px.area(df, x='dates', y='count')
fig.show()如果您只需要一个简单的时间序列,例如下面所示的时间序列,那么也许就足够了。 但是,在同一x轴(时间)上具有两个或更多数据计数的Plotly呢?
为了解决上面的问题,我们就需要从Plotly Express切换到Plotly Graph Objects。大多数时候,我都会使用Plotly的graphobjects库,因为里面包含了很多Express不可用的功能。 例如,使用graphobjects,我可以生成混合子图,并且重要的是,可以覆盖多种类型的数据(例如时间序列)。
在使用px之前,我们将px对象分配给了fig(如上所示),然后使用fig.show()显示了fig。 现在,我们不想创建一个包含一系列数据的图形,而是要创建一个空白画布,以后再添加到其中。 如果运行以下代码,则将按字面值返回一个空白画布。
import plotly.graph_objects as go
fig = go.Figure()在使用空白的graph_objects的情况下,可以向画布添加痕迹(图形)。 对于线和散点图等最常见的任务,go.Scatter()方法是您想要使用的方法。
# add a graph to the canvas as a trace
fig.add_trace(go.Scatter(x=df['dates'], y=df['count']))尽管这可行,但是您可能会发现输出不是理想的。 代替由点按时间顺序连接的点,我们有了某种奇怪的" z"符号。
运行中的go.Scatter()图,但未达到预期。 点的连接顺序错误。 下面图形是按日期对值进行排序后的相同数据。
这个小问题可能会令人沮丧,因为使用px,图形可以按您期望的方式运行,而无需进行任何调整,但go并非如此。 要解决该问题,只需确保按日期对数组进行排序,以使其按某种逻辑顺序绘制和连接点。
# sort the df by a date col, then show fig
df = df.sort_values(by='dates')此时,在相同的时间序列上手动绘制不同类型的数据可能就足够了。 例如,如果您有两个不同的具有时间序列数据或多个子集的DataFrame,则可以继续向graph_object添加。
# if multiple DataFrames: df1 and df2
fig.add_trace(go.Scatter(x=df1['dates'], y=df1['count']))
fig.add_trace(go.Scatter(x=df2['dates'], y=df2['count']))
# ... and so on但是,如果您有大量的数据,那么很快就不希望编写同样的代码了。所以我们使用分组来进行优化
df = df.groupby('types')# after grouping, add traces with loops
for group_name, df in group:
fig.add_trace(
go.Scatter(
x=df['dates']
, y=df['count']
))把它们放在一起
在前面的小节中,我们逐步介绍了将整个可视化整合在一起所需的一些部件和部件,但是还有一些缺失的部分。例如,使用groupby方法时,我们丢失了类别(a、b)的type列,仅凭三个数据点很难判断是否存在任何类型的趋势。在本节中,让我们切换到一个样本数据集,该数据集有几百条记录和两个类别(a、b),它们跨越了几年时间。
读取和分组数据
在下面的代码块中,一个示例CSV表被加载到一个Pandas数据框架中,列作为类型和日期。类似地,与前面一样,我们将date列转换为datetime。这一次,请注意我们如何在groupby方法中包含types列,然后将types指定为要计数的列。
在一个列中,用分类聚合计数将dataframe分组。
gitcsv = 'https://raw.githubusercontent.com/justinhchae/medium/main/sample.csv'
df = pd.read_csv(gitcsv, index_col=0)
df['dates'] = pd.to_datetime(df['dates'])
freq='M'
df = df.groupby(['types', pd.Grouper(key='dates', freq=freq)])['types'].agg(['count']).reset_index()
print(df)
"""
types dates count
0 b 2016-01-31 1
1 a 2016-01-31 5
2 b 2016-02-29 3
3 a 2016-02-29 4
4 b 2016-03-31 3
5 a 2016-03-31 6
6 b 2016-04-30 1
...
"""以前我们只按一列计数排序,但是我们也需要按日期排序。我们如何根据日期和计数排序?对于这个任务,在sort_values()的' by= '参数中指定列名。
# return a sorted DataFrame by date then count
df = df.sort_values(by=['dates', 'count'])# if you want to reset the index
df = df.reset_index(drop=True)最后,让我们看看使用Plotly Express使用样本数据生成的图是什么样子的。
fig = px.area(df, x='dates', y='count', color='types')现在,同样的数据表示为回归曲线。
fig = px.scatter(df
, x='dates'
, y='count'
, color='types'
, trendline='lowess'
)这些都很好,但是我们如何才能将回归曲线覆盖在时间序列之上呢?有几种方法可以完成这项工作,但是经过一番研究之后,我决定使用图形对象来绘制图表并Plotly表达来生成回归数据。
从绘图对象开始重新绘制时间序列,为了填充每行下面的区域,将fill= ' tozeroy '作为参数添加到add_trace()方法。
import plotly.graph_objects as go
import plotly_express as px
# group the dataframe
group = df.groupby('types')
# create a blank canvas
fig = go.Figure()
# each group iteration returns a tuple
# (group name, dataframe)
for group_name, df in group:
fig.add_trace(
go.Scatter(
x=df['dates']
, y=df['count']
, fill='tozeroy'
))下面是我从Stack Overflow的帖子中借鉴的一个技巧,在循环中组合Plotly Express和Graph对象。有人想要在条形图中添加趋势线,当我们使用Plotly Express来生成趋势线时,它也会创建数据点——这些数据点可以作为普通的x、y数据访问,就像dataframe中的计数一样。因此,我们可以将它们作为图形对象在循环中绘制出来。
注意,我们使用Graph Objects将两类数据绘制到一个图中,但使用Plotly Express为每个类别的趋势生成数据点。
import plotly.graph_objects as go
import plotly_express as px
# group the dataframe
group = df.groupby('types')
# create a blank canvas
fig = go.Figure()
# each group iteration returns a tuple
# (group name, dataframe)
for group_name, df in group:
# in each loop, draw a time series then a regression line
fig.add_trace(
go.Scatter(
x=df['dates']
, y=df['count']
, fill='tozeroy'
))
# source: https://stackoverflow.com/questions/60204175/plotly-how-to-add-trendline-to-a-bar-chart
# generate a regression line with px
help_fig = px.scatter(df, x=df['dates'], y=df['count'], trendline="lowess")
# extract points as plain x and y
x_trend = help_fig["data"][1]['x']
y_trend = help_fig["data"][1]['y']
# add the x,y data as a scatter graph object
fig.add_trace(
go.Scatter(x=x_trend, y=y_trend, name='trend'))我们已经有了带有线条和趋势的基本图形对象,但还需要清理一些东西。例如,标签不是很有帮助,颜色都掉了。
要处理一些内部管理问题,需要向go.Scatter()方法添加更多参数。因为我们在for循环中传递了分组的dataframe,所以我们可以迭代地访问组名和数据帧的元素。在这段代码的最终版本中,请注意散点对象中的line和name参数,以指定虚线。
import pandas as pd
import plotly.graph_objects as go
import plotly_express as px
gitcsv = 'https://raw.githubusercontent.com/justinhchae/medium/main/sample.csv'
df = pd.read_csv(gitcsv, index_col=0)
df['dates'] = pd.to_datetime(df['dates'])
freq='M' # or D or Y
df = df.groupby(['types', pd.Grouper(key='dates', freq=freq)])['types'].agg(['count']).reset_index()
df = df.sort_values(by=['dates', 'count']).reset_index(drop=True)
# group the dataframe
group = df.groupby('types')
# create a blank canvas
fig = go.Figure()
# each group iteration returns a tuple
# (group name, dataframe)
for group_name, df in group:
fig.add_trace(
go.Scatter(
x=df['dates']
, y=df['count']
, fill='tozeroy'
, name=group_name
))
# generate a regression line with px
help_fig = px.scatter(df, x=df['dates'], y=df['count']
, trendline="lowess")
# extract points as plain x and y
x_trend = help_fig["data"][1]['x']
y_trend = help_fig["data"][1]['y']
# add the x,y data as a scatter graph object
fig.add_trace(
go.Scatter(x=x_trend, y=y_trend
, name=str('trend ' + group_name)
, line = dict(width=4, dash='dash')))
transparent = 'rgba(0,0,0,0)'
fig.update_layout(
hovermode='x',
showlegend=True
# , title_text=str('Court Data for ' + str(year))
, paper_bgcolor=transparent
, plot_bgcolor=transparent
, title='Monthly Time Series of A and B with Regression'
)
fig.show()将聚合的数据分组并使用for循环对其绘图后的最终结果。
总结
在本文中介绍了使用Plotly将对象绘制成带有趋势线的时间序列来绘制数据。
解决方案通常需要按所需的时间段对数据进行分组,然后再按子类别对数据进行分组。在对数据分组之后,使用Graph Objects库和第二在每个循环中生成数据并为回归线绘制数据。
结果是一个交互式图表,显示了每一类数据随时间变化的计数和趋势线。
译者注:plotly是一个非常好的可视化神器,尤其是在交互操作方面,所以我选择sns和matplotlib
作者:Justin Chae
deephub翻译组
相关推荐
- 万能网卡驱动下载win11(万能网卡驱动windows7版2018最新版)
-
在windows11系统中点击桌面下方的开始图标,打开设置页面鼠标点击选择设备管理器选项。找到其中的网络适配器功能。右键选择显卡,点击卸载设备按钮等待卸载完成后重新安装驱动并重启计算机设备即可。想要修...
- cpu总是100使用率怎么回事呢
-
CPU占用率100%可能有多种原因。以下是一些可能的原因:驱动没有经过认证,这可能导致CPU资源占用100%。杀毒软件可能会占用大量的CPU资源,因为它们需要实时监控网页、邮件、个人隐私等功能。病毒或...
- 苹果6怎么升级系统版本(苹果6怎么升级系统版本最高能到多少)
-
要是喜欢自己动手可以自己去官网上下载,新系统在更新,他只是不支持自动更新的。如果不想自己动手,可以去拼多多或者是淘宝里面找一找,多的是那种帮你刷新系统的。也就是一点点钱的事情。现在选择很多活人不会被尿...
- windows2003镜像32位下载(win2003系统镜像)
-
虚拟光驱装系统,(win7,xp通用)具体步骤一、将从网上下载的win7旗舰版ISO系统文件存放到D盘。二、从网上下载虚拟光驱,打开安装后在任务栏右通知区显示“虚拟DAEMON管理器”图标,在我的电脑...
- win10电脑自动更新怎么关闭(win10电脑怎么关闭自动更新系统)
-
win10老推送win11打开的方法步骤如下,1,首先,打开设置,点击更新和安全2,打开后,点击windows预览体验计划3,打开后,点击开始4,然后按流程进行注册5,注册完成后,点击选择帐户6,然后...
- window7下载steam(window7下载一键重装如何恢复网络)
-
回答如下:要在Windows7上下载Steam,您可以按照以下步骤操作:1.打开您的浏览器,访问Steam官网(https://store.steampowered.com)。2.点击页面右上角...
- 系统还原没有还原点怎么办(系统还原点不动怎么办)
-
如果电脑没有创建还原点,就不能使用系统还原来回到之前的状态。但是,可以尝试使用其他备份工具或软件来恢复数据或重建系统。比如,可以使用第三方备份软件来备份重要文件和数据。如果是系统出现问题,可以尝试重新...
- 正在准备windows(正在准备windows请勿关机怎么办)
-
这个情况在使用华为电脑时可能会遇到。一般来说,这是因为电脑正在进行系统更新或者安装软件程序等操作,导致启动时间较长。如果电脑显示“正在准备Windows,请勿关闭电源”,则说明电脑正在进行系统更新。...
-
- 有win10安装包怎么装系统(win10安装包安装教程)
-
如果是原版ISO镜像,可以加载到虚拟光驱直接安装。如果是第三方更改的就需要启动盘。个人建议用U盘启动盘来安装。下载一个u盘启动盘程序(优启通、大白菜……),按照提示把它安装到U盘。启动盘制作完毕以后,启动电脑安快捷键选择U盘启动。进入pe后...
-
2026-01-14 16:37 liuian
- gho怎么变成iso文件(gho改成iso)
-
要将GHO转换为ISO,您需要使用GHO映像转换器软件。以下是执行此操作的步骤:1.下载和安装GHO映像转换器软件。2.运行转换器软件,并单击“打开”按钮。3.在弹出窗口中,选择要转换的GHO...
- office和visio安装顺序(office和visio怎么一起安装)
-
在某些情况下,安装Visio可能会发生与Office365冲突的问题。这是因为Visio和Office365具有不同的版本,可能会导致安装时出现错误或兼容性问题。为了避免这种冲突,...
- 一周热门
-
-
飞牛OS入门安装遇到问题,如何解决?
-
如何在 iPhone 和 Android 上恢复已删除的抖音消息
-
Boost高性能并发无锁队列指南:boost::lockfree::queue
-
大模型手册: 保姆级用CherryStudio知识库
-
用什么工具在Win中查看8G大的log文件?
-
如何在 Windows 10 或 11 上通过命令行安装 Node.js 和 NPM
-
威联通NAS安装阿里云盘WebDAV服务并添加到Infuse
-
Trae IDE 如何与 GitHub 无缝对接?
-
idea插件之maven search(工欲善其事,必先利其器)
-
如何修改图片拍摄日期?快速修改图片拍摄日期的6种方法
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
