SparkSQL——DataFrame的创建与使用
liuian 2025-07-27 22:00 39 浏览
本文主要从以下几个方面介绍SparkSQL中的DataFrame:
第一,SparkSQL的作用
第二,什么是DataFrame
第三,DataFrame与RDD的区别
第四,DataFrame的创建与使用 (Spark1.x与Spark2.x两种不同版本)
第一,SparkSQL的作用
SparkSQL是spark处理结构化数据的一个模块,它的前身是shark,与基础的spark RDD不同,SparkSQL提供了结构化数据及计算结果等信息的接口,在内部,SparkSQL使用这个额外的信息去执行额外的优化,有几种方式可以跟SparkSQL进行交互,包括SQL和DataSet API,使用相同的执行引擎进行计算的时候,无论是使用哪一种计算引擎都可以快速的计算。
在使用RDD进行处理时,需要了解RDD的每个算子的特点,以求得高效的执行相应的操作。在使用SparkSQL时,程序会自动优化算子的执行过程以及使用哪个算子,提高效率。SparkSQL主要用于进行结构化数据的处理,作为分布式的SQL查询引擎。
第二,什么是DataFrame
DataFrame的前身是SchemaRDD,从Spark 1.3.0开始SchemaRDD更名为DataFrame。与SchemaRDD的主要区别是:DataFrame不再直接继承自RDD,而是自己实现了RDD的绝大多数功能。你仍旧可以在DataFrame上调用rdd方法将其转换为一个RDD。DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格,DataFrame带有Schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。
1.DataFrame的作用:
是Spark SQL提供的最核心的编程抽象。
以列的形式组织的,分布式的数据集合。
它其实和关系型数据库中的表非常类似,但是底层做了很多的优化。
2.DataFrame可以构建的来源:
(1)结构化的数据文件
(2)Hive中的表
(3)外部的关系型数据库
(4)RDD
第三,DataFrame与RDD的区别
RDD可看作是分布式的对象的集合,Spark并不知道对象的详细模式信息,DataFrame可看作是分布式的Row对象的集合,其提供了由列组成的详细模式信息,使得Spark SQL可以进行某些形式的执行优化。DataFrame和普通的RDD的逻辑框架区别如下所示:
左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解 Person类的内部结构。
而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。这样看起来就像一张表了,DataFrame还配套了新的操作数据的方法,DataFrame API(如df.select())和SQL(select id, name from xx_table where ...)。
此外DataFrame还引入了off-heap,意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作。
RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化。
有了DataFrame这个高一层的抽象后,我们处理数据更加简单了,甚至可以用SQL来处理数据了,对开发者来说,易用性有了很大的提升。
不仅如此,通过DataFrame API或SQL处理数据,会自动经过Spark 优化器(Catalyst)的优化,即使你写的程序或SQL不高效,也可以运行的很快。
1、DataFrame与RDD的优缺点
RDD的优缺点:
优点:
(1)编译时类型安全
编译时就能检查出类型错误
(2)面向对象的编程风格
直接通过对象调用方法的形式来操作数据
缺点:
(1)序列化和反序列化的性能开销
无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化。
关于序列化问题可以参考这篇文章:
https://www.toutiao.com/i6846761221337809419/
(2)GC的性能开销
频繁的创建和销毁对象, 势必会增加GC
DataFrame通过引入schema和off-heap(不在堆里面的内存,指的是除了不在堆的内存,使用操作系统上的内存),解决了RDD的缺点, Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了;通过off-heap引入,可以快速的操作数据,避免大量的GC。但是却丢了RDD的优点,DataFrame不是类型安全的, API也不是面向对象风格的。
第四,DataFrame的创建与使用
spark1.x版本
在该版本下,我选择使用的scala2.10.7版本
spark1.x版本中总共有三种编程模式:
1、RDD数据类型调用toDF方法将RDD转化为DataFrame
package xxx
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SQLContext}
/**
* Spark1.x 编程模式
* 1、创建SparkContext,然后再创建SQLContext
* 2、先创建RDD,对数据进行整理,然后关联case class,将非结构化数据转化为结构化数据
* 3、显示的调用toDF方法将RDD转化为DataFrame
* 4、注册临时表
* 5、执行SQL(Transformation方式)
* 6、执行action
*/
object SqlDemo1 {
def main(args: Array[String]): Unit = {
//提交的这个程序可以连接到Spark集群中
val conf = new SparkConf().setAppName("SQLDemo1").setMaster("local[2]")
//创建SparkSQL的连接(程序执行的入口)
// sparkContext不能创建特殊的RDD(DataFrame)
val sc = new SparkContext(conf)
//将SparkContext包装进而增强
// 创建特殊的RDD(DataFrame),就是有schema信息的RDD
val sqlContext = new SQLContext(sc)
//先有一个普通的RDD,然后在关联上schema,进而转成DataFrame
val lines = sc.textFile("hdfs://master:9000/test/sparkSQL/person.txt")
//将数据进行整理
val boyRDD: RDD[Person] = lines.map(line => {
val fields = line.split(",")
val id = fields(0).toInt
val name = fields(1)
val age = fields(2).toInt
val score = fields(3).toInt
Person(id, name, age, score)
})
//该RDD装的是Person类型的数据,有了shcma信息,但是还是一个RDD
//将RDD转换成DataFrame
//导入隐式转换
import sqlContext.implicits._
val bdf: DataFrame = boyRDD.toDF
//变成DF后就可以使用两种API进行编程了
//把DataFrame先注册临时表
bdf.registerTempTable("t_boy")
//书写SQL(SQL方法应其实是Transformation)
val result: DataFrame = sqlContext.sql("SELECT * FROM t_boy ORDER BY score desc, age asc")
//查看结果(触发Action)
result.show()
sc.stop()
}
case class Person(id: Int, name: String, age: Int, score: Int)
}
2、在RDD中关联Row,将非结构化的数据转化为结构化的数据,然后定义模式,通过调用SqlContext的createDataFrame方法将RDD转化为DataFrame
package xxx
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StructField, StructType, StringType}
import org.apache.spark.sql.{DataFrame, Row, SQLContext, types}
/**
* Spark1.x 编程模式
* 1、创建SparkContext,然后再创建SQLContext
* 2、先创建RDD,对数据进行整理,然后关联ROW,将非结构化数据转化为结构化数据
* 3、定义schema
* 4、调用sqlContext的createDataFrame方法
* 5、注册临时表
* 6、执行SQL(Transformation方式)
* 7、执行action
*/
object SqlDemo2 {
def main(args: Array[String]): Unit = {
//提交的这个程序可以连接到Spark集群中
val conf = new SparkConf().setAppName("SQLDemo1").setMaster("local[2]")
//创建SparkSQL的连接(程序执行的入口)
// sparkContext不能创建特殊的RDD(DataFrame)
val sc = new SparkContext(conf)
//将SparkContext包装进而增强
// 创建特殊的RDD(DataFrame),就是有schema信息的RDD
val sqlContext = new SQLContext(sc)
//先有一个普通的RDD,然后在关联上schema,进而转成DataFrame
val lines = sc.textFile("hdfs://master:9000/test/sparkSQL/person.txt")
//将数据进行整理
val rowRDD = lines.map(line => {
val fields = line.split(",")
val id = fields(0).toInt
val name = fields(1)
val age = fields(2).toInt
val score = fields(3).toInt
Row(id, name, age, score)
})
// 设置结构类型,表头信息
val structType = StructType(List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true),
StructField("score", IntegerType, true)
))
// 将RowRDD关联schema
val bdf = sqlContext.createDataFrame(rowRDD, structType)
//变成DF后就可以使用两种API进行编程了
//把DataFrame先注册临时表
bdf.registerTempTable("t_boy")
//书写SQL(SQL方法应其实是Transformation)
val result: DataFrame = sqlContext.sql("SELECT * FROM t_boy ORDER BY score desc, age asc")
//查看结果(触发Action)
result.show()
sc.stop()
}
}
3、创建DataFrame的方式同1,只是在使用DataFrame的时候不使用SQL语句,而是使用DataFrame API,这样就不需要将DataFrame注册成临时表
package xxx
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{Row, SQLContext}
/**
* Spark1.x 编程模式
* 1、创建SparkContext,然后再创建SQLContext
* 2、先创建RDD,对数据进行整理,然后关联ROW,将非结构化数据转化为结构化数据
* 3、定义schema
* 4、调用sqlContext的createDataFrame方法
* 6、执行DataFrame语句(Transformation方式)
* 7、执行action
*/
object SqlDemo3 {
def main(args: Array[String]): Unit = {
//提交的这个程序可以连接到Spark集群中
val conf = new SparkConf().setAppName("SQLDemo1").setMaster("local[2]")
//创建SparkSQL的连接(程序执行的入口)
// sparkContext不能创建特殊的RDD(DataFrame)
val sc = new SparkContext(conf)
//将SparkContext包装进而增强
// 创建特殊的RDD(DataFrame),就是有schema信息的RDD
val sqlContext = new SQLContext(sc)
//先有一个普通的RDD,然后在关联上schema,进而转成DataFrame
val lines = sc.textFile("hdfs://master:9000/test/sparkSQL/person.txt")
//将数据进行整理
val rowRDD = lines.map(line => {
val fields = line.split(",")
val id = fields(0).toInt
val name = fields(1)
val age = fields(2).toInt
val score = fields(3).toInt
Row(id, name, age, score)
})
// 设置结构类型,表头信息
val structType = StructType(List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true),
StructField("score", IntegerType, true)
))
// 将RowRDD关联schema
val bdf = sqlContext.createDataFrame(rowRDD, structType)
// 不使用SQL的方式,就不需要注册临时表
val frame = bdf.select("id", "name", "score")
import sqlContext.implicits._
val frame1 = bdf.orderBy(#34;score" desc, #34;age" asc)
frame1.show()
sc.stop()
}
}
在Spark2.x版本中,引入了SparkSession的概念,它为用户提供了一个统一的切入点来使用Spark的各项功能,用户不但可以使用DataFrame的各种API和可以使用SQL,学习Spark2的难度也会大大降低。SparkConf、SparkContext和SQLContext都已经被封装在SparkSession当中。
在该版本下,我选择使用的scala2.11.12版本
1、创建SparkSession,由于SparkContext被封装在SparkSession中,直接调用
SparkSession.SparkContext.textFile读取文件,在RDD中关联Row,将非结构化的数据转化为结构化的数据,然后定义模式,通过调用SqlContext的createDataFrame方法将RDD转化为DataFrame.
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{DoubleType, IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
/**
* Spark2.x 编程模式
* 1、创建SparkSession,SparkContext被封装在SparkSession中,直接调用读取文件
* 2、先创建RDD,对数据进行整理,然后关联ROW,将非结构化数据转化为结构化数据
* 3、定义schema
* 4、调用SparkSession的createDataFrame方法
* 5、注册临时表
* 6、执行DataFrame语句(Transformation方式)
* 7、执行action
*/
object SparkTest1 {
def main(args: Array[String]): Unit = {
//spark2.x SQL的编程API(SparkSession)
//是spark2.x SQL执行的入口
val session = SparkSession.builder()
.appName("SQLTest1")
.master("local[*]")
.getOrCreate()
//创建RDD
val lines: RDD[String] = session.sparkContext.textFile("hdfs://master:9000/test/sparkSQL/person.txt")
//将数据进行整理
val rowRDD: RDD[Row] = lines.map(line => {
val fields = line.split(",")
val id = fields(0).toInt
val name = fields(1)
val age = fields(2).toInt
val score = fields(3).toDouble
Row(id, name, age, score)
})
//结果类型,其实就是表头,用于描述DataFrame
val schema: StructType = StructType(List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true),
StructField("score", DoubleType, true)
))
//创建DataFrame
val df: DataFrame = session.createDataFrame(rowRDD, schema)
// 导入隐式转化
import session.implicits._
val df2: Dataset[Row] = df.where(#34;score" > 98).orderBy(#34;score" desc, #34;age" asc)
df2.show()
session.stop()
}
}
2、创建DataFrame后,同样也可以调用createTempView将DataFrame注册成视图,在视图里使用SQL进行查询。如上面的一样,省略。。。。
相关推荐
- 苹果笔记本怎么下载windows系统
-
方法一:使用BootCamp方法二:使用虚拟机方法三:使用Wine简介BootCamp是苹果电脑自带的一个软件,可以帮助用户在Mac上安装Windows操作系统。虚拟机则是运行在Mac上的一个软件...
- 华硕电脑激活码(华硕电脑windows激活码在哪里)
-
你所说的应该是系统激活密钥吧华硕OEM密钥就行!HomePremium(家庭高级版):27GBM-Y4QQC-JKHXW-D9W83-FJQKDUltimate(旗舰版):6K2KY-BF...
- wifi如何防止别人蹭网(wifi如何防止别人蹭网呢)
-
防止WIFI被蹭网的方法1、家庭的wifi信号,一般是通过设置无线路由器发射出来。在设置无线路由器时,一定要注意设置无线密码的安全强度。最好含有大小写字母加数字的组合,不要设置连续数字,比如“1234...
- 无线ap安装示意图(无线ap如何安装方法)
-
商用无线ap安装完成后连接ap应用添加wifi网络信号将无线网卡插入电脑USBWindows7/8系统下,网卡安装成功后直接进行软件安装...2.继续安装类型,推荐保持默认选择,点击“下一步”继续安装...
- miui官网开发版下载(小米miui开发版下载)
-
你好,miui12开发版下载方式如下1打开浏览器,登录小米Rom官网,2进去之后搜索自己的手机型号,3点击进入就可以看到所有发布过的miui版本4点击想要的12版本下载即可。现在的MIUI开发版需要申...
-
- 惠普台式机进入bios设置u盘启动
-
设置u盘启动的步骤如下:1、首先,将u盘插入hp台式机的USB接口处。2、开机快速断续的按F10键进入BIOS设置界面。3、将光标移到【BootDevicePriority】选项按回车键进入。4、选择【HDDGroupBootPr...
-
2026-01-15 00:37 liuian
- 云手机免费版无限挂机怎么用
-
1、登陆后,如果需要挂网页游戏,点击服务器的左下角,找到IE浏览器,然后打开网页游戏,登陆你的账号就行了,不要关闭IE浏览器,你的网页游戏就会24小时挂在云服务器上面。2、如果想要挂机,打开IE浏览器...
- 上海最近3天疫情情况(上海近几天的新冠疫情情况)
-
根据国家卫健委的每天疫情通报及上海市的疫情通报,上海没有一个区属中高风险地区,所以从上海任何一个区返乡都不需要隔离14天。上海这么大的城市,每天人来人往的Ill流不息,能继续做到区级地区没有中高级风险...
- windows media player怎么下载
-
方法如下:在安装WMP11时只是把C:\DocumentsandSettings\AllUsers\ApplicationData\WindowsGenuineAdvantage\data...
- during(during用法)
-
during用来表示一段时间,其意义大致相当于in的用法。一般来说,凡是能用in的地方,也可以用during.例如:Hecametoseemeduringmyabsence.Don’t...
- 深圳电脑城在哪里(深圳电脑卖场)
-
龙岗:世纪电脑城,平湖电脑城,京科电脑城坪山新区:坪山电脑城龙华:观澜电脑城,大浪电脑城,宏华电脑城,龙华电子城宝安区:赛格电子城,宝安电子城,丰明电脑城,沙井电子城龙岗中心区那边有两个电子城,...
- 电脑上怎么清理c盘垃圾(电脑里怎么清理c盘的东西)
-
C:\ProgramFiles\WindowsApps(隐藏文件夹)。打开“此电脑”,点击“查看”,勾选“隐藏的项目”,即可查看隐藏文件。为保证文件安全,此文件夹需要获取权限才能操作。获取方式...
- 手机哪个杀毒软件最好用
-
杀毒软件我有用过好几种用过之觉得体验感及安全性来说人喜欢推荐腾讯手机管家功能比较全面监控流量、查杀病毒、保护隐私等等界面也比较漂亮重点还要定期扫描同时也要轻易点开别人发链接之类软件有提示危险绝对要点开...
-
- 笔记本电脑怎样截图(苹果笔记本电脑怎样截图)
-
方法/步骤1第一个办法自然是我们最常见最简单的,使用“PrintScreen”键截图了。点击“PrintScreen”键,我们就可以直接截取全部屏幕,找个对话框或者文字区域粘贴就好了。我截的图是这样的2Windows系统都自带有截图工具,我...
-
2026-01-14 22:37 liuian
- vaio笔记本u盘启动(hipaa笔记本u盘启动)
-
可能是u盘启动快捷键没有使用正确。因为笔记本型号不同,所以BIOS会有所不同,并且进入bios的启动快捷键也会不同。而索尼笔记本开机需要按F2键进入bios设置中。 2、在bios中没有正确设置u盘...
- 一周热门
-
-
飞牛OS入门安装遇到问题,如何解决?
-
如何在 iPhone 和 Android 上恢复已删除的抖音消息
-
Boost高性能并发无锁队列指南:boost::lockfree::queue
-
大模型手册: 保姆级用CherryStudio知识库
-
用什么工具在Win中查看8G大的log文件?
-
如何在 Windows 10 或 11 上通过命令行安装 Node.js 和 NPM
-
威联通NAS安装阿里云盘WebDAV服务并添加到Infuse
-
Trae IDE 如何与 GitHub 无缝对接?
-
idea插件之maven search(工欲善其事,必先利其器)
-
如何修改图片拍摄日期?快速修改图片拍摄日期的6种方法
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
