Python 数据转换实用技巧:3 分钟搞定杂乱数据,新手也能学会
liuian 2025-07-27 22:00 77 浏览
你是不是也遇到过这种情况:好不容易收集到数据,却因为格式乱七八糟没法分析 —— 日期格式五花八门,金额里混着各种符号,想算个平均值都难。其实,用对 Python 数据转换技巧,这些问题都能轻松解决。今天就分享几个超实用的方法,新手也能直接套用。
一、数据类型转换:别让类型错误拖后腿
拿到数据先检查类型,这是最基础也最关键的一步。很多分析出错,都是因为类型不对。
3 种最常用的转换方法
import pandas as pd# 原始数据
data = {
'订单日期': ['2023-10-05', '2023/10/06', '2023年10月07日'],
'金额': ['399', '129.9', '599'],
'用户ID': ['1001', '1002', '1003'],
'产品类别': ['口红', '粉底', '口红']
}
df = pd.DataFrame(data)
# 1. 字符串转日期
df['订单日期'] = pd.to_datetime(df['订单日期'], errors='coerce')
# 2. 文本金额转数字
df['金额'] = pd.to_numeric(df['金额'], errors='coerce')
# 3. 字符串用户ID转整数
df['用户ID'] = pd.to_numeric(df['用户ID'], downcast='integer')
# 4. 产品类别转分类类型(省内存)
df['产品类别'] = df['产品类别'].astype('category')
转换时的 3 个避坑点
- 转换失败不报错:加上errors='coerce',失败的会变成NaN,程序继续运行
- 日期格式乱不怕:pd.to_datetime能自动识别大部分格式,省心
- 大整数别用 int64:downcast='integer'会自动选合适类型,节省内存
检查转换效果:
# 看每列有多少转换失败的print(df.isnull().sum())
二、格式转换:让数据 “说同一种话”
不同来源的数据格式往往不一样,必须统一才能分析。
日期格式统一
def 统一日期格式(日期列, 目标格式='%Y-%m-%d'):# 先转成datetime类型
日期时间列 = pd.to_datetime(日期列, errors='coerce')
# 再转成目标字符串格式
统一格式列 = 日期时间列.dt.strftime(目标格式)
# 转换失败的保留原始值
转换失败 = 日期时间列.isna()
统一格式列[转换失败] = 日期列[转换失败].astype(str)
return 统一格式列
# 用法
df['订单日期_统一'] = 统一日期格式(df['订单日期'], '%Y年%m月%d日')
金额里的符号怎么处理?
# 处理带货币符号的金额,如"yen399" "$129.9"df['金额_清洗'] = df['金额字符串'].astype(str).str.extract(r'(\d+\.?\d*)').astype(float)
# 处理欧洲格式数字,如"1.234,56"(逗号是小数点)
def 欧洲数字转正常(数字列):
清洗列 = 数字列.str.replace('.', '', regex=False)
清洗列 = 清洗列.str.replace(',', '.', regex=False)
return 清洗列.astype(float)
三、结构转换:长表宽表按需转
数据结构不对,分析起来很费劲,长表宽表转换是常用技巧。
长表转宽表(适合汇总)
# 长表数据长表 = pd.DataFrame({
'用户ID': [1001, 1001, 1002, 1002],
'月份': ['1月', '2月', '1月', '2月'],
'消费金额': [399, 599, 299, 499]
})
# 转宽表:一行一个用户,一列一个月份
宽表 = 长表.pivot(
index='用户ID',
columns='月份',
values='消费金额'
).reset_index()
宽表转长表(适合趋势分析)
# 把宽表转回去长表2 = pd.melt(
宽表,
id_vars=['用户ID'], # 保持不变的列
value_vars=['1月', '2月'], # 要转换的列
var_name='月份', # 新列名(原列名)
value_name='消费金额' # 新列名(原数值)
)
四、嵌套数据转换:JSON 信息轻松拆
很多数据存在 JSON 格式的字段里,比如用户信息是{"姓名":"张三","年龄":30},这样拆出来:
import jsondef 拆JSON列(数据框, 列名):
def 解析JSON(x):
try:
return json.loads(x) if pd.notna(x) else {}
except:
return {} # 解析失败返回空字典
解析结果 = 数据框[列名].apply(解析JSON)
拆出来的列 = pd.json_normalize(解析结果)
拆出来的列.columns = [f'{列名}_{子列}' for 子列 in 拆出来的列.columns]
return pd.concat([数据框.drop(列名, axis=1), 拆出来的列], axis=1)
# 用法
# df = 拆JSON列(df, 'user_info')
# 会多出user_info_姓名、user_info_年龄等列
五、实战案例:电商订单数据转换全流程
处理有这些问题的订单数据:
- 订单日期格式混乱
- 金额带货币符号
- 用户信息是 JSON 格式
- 评论有乱码
def 处理订单数据(原始数据):df = 原始数据.copy()
# 1. 类型转换
df['订单日期'] = pd.to_datetime(df['订单日期'], errors='coerce')
df['金额'] = df['金额'].astype(str).str.extract(r'(\d+\.?\d*)').astype(float)
# 2. 格式统一
df['订单日期_标准'] = 统一日期格式(df['订单日期'])
df['订单月份'] = df['订单日期'].dt.month # 提取月份
# 3. 拆JSON列
df = 拆JSON列(df, '用户信息')
# 4. 处理评论乱码
df['评论_清洗'] = df['评论'].str.encode('latin-1').str.decode('utf-8', errors='ignore')
return df
3 个实用小技巧
- 转换前备份:df_copy = df.copy(),转错了还能重来
- 大文件分块处理:pd.read_csv(chunksize=10000),省内存
- 检查内存占用:df.memory_usage(deep=True).sum()/1024/1024,太大就优化类型
掌握这些数据转换技巧,再乱的数据也能变得整整齐齐,分析起来事半功倍。赶紧试试,有问题评论区留言。觉得有用,点赞收藏吧!
相关推荐
- 搭建一个20人的办公网络(适用于20多人的小型办公网络环境)
-
楼主有5台机上网,则需要一个8口路由器,组网方法如下:设备:1、8口路由器一台,其中8口为LAN(局域网)端口,一个WAN(广域网)端口,价格100--400元2、网线N米,这个你自己会看了:)...
- 笔记本电脑各种参数介绍(笔记本电脑各项参数新手普及知识)
-
1、CPU:这个主要取决于频率和二级缓存,频率越高、二级缓存越大,速度越快,现在的CPU有三级缓存、四级缓存等,都影响相应速度。2、内存:内存的存取速度取决于接口、颗粒数量多少与储存大小,一般来说,内...
- 汉字上面带拼音输入法下载(字上面带拼音的输入法是哪个)
-
使用手机上的拼音输入法打成汉字的方法如下:1.打开手机上的拼音输入法,在输入框中输入汉字的拼音,例如“nihao”。2.根据输入法提示的候选词,选择正确的汉字。例如,如果输入“nihao”,输...
- xpsp3安装版系统下载(windowsxpsp3安装教程)
-
xpsp3纯净版在采用微软封装部署技术的基础上,结合作者的实际工作经验,融合了许多实用的功能。它通过一键分区、一键装系统、自动装驱动、一键设定分辨率,一键填IP,一键Ghost备份(恢复)等一系列...
- 没有备份的手机数据怎么恢复
-
手机没有备份恢复数据方法如下1、使用数据线将手机与电脑连接好,在“我的电脑”中可以看到手机的盘符。 2、将手机开启USB调试模式。在手机设置中找到开发者选项,然后点击“开启USB调试模式”。 3、...
- 电脑怎么激活windows11专业版
-
win11专业版激活方法有多种,以下提供两种常用的激活方式:方法一:使用激活密钥激活。在win11桌面上右键点击“此电脑”,选择“属性”选项。进入属性页面后,点击“更改产品密钥或升级windows”。...
- 华为手机助手下载官网(华为手机助手app下载专区)
-
华为手机助手策略调整,已不支持从应用市场下载手机助手,目前华为手机助手是需要在电脑上下载或更新手机助手到最新版本,https://consumer.huawei.com/cn/support/his...
- 光纤线断了怎么接(宽带光纤线断了怎么接)
-
宽带光纤线断了可以重接,具体操作方法如下:1、光纤连接的时候要根据束管内,同色相连,同芯相连,按顺序进行连接,由大到小。一般有三种连接方法,分别是熔接、活动连接和机械连接。2、连接的时候要开剥光缆,抛...
- win7旗舰版和专业版区别(win7旗舰版跟专业版)
-
1、功能区别:Win7旗舰版比专业版多了三个功能,分别是Bitlocker、BitlockerToGo和多语言界面; 2、用途区别:旗舰版的功能是所有版本中最全最强大的,占用的系统资源,...
- 万能连接钥匙(万能wifi连接钥匙下载)
-
1、首先打开wifi万能钥匙软件,若手机没有开启WLAN,就根据软件提示打开WLAN开关;2、打开WLAN开关后,会显示附近的WiFi,如果知道密码,可点击相应WiFi后点击‘输入密码’连接;3、若不...
- 雨林木风音乐叫什么(雨林木风是啥)
-
雨林木风的创始人是陈年鑫先生。陈年鑫先生于1999年创立了雨林木风公司,其初衷是为满足中国市场对高品质、高性能电脑的需求。在陈年鑫先生的领导下,雨林木风以技术创新、产品质量和客户服务为核心价值,不断推...
- aics6序列号永久序列号(aics6破解序列号)
-
关于AICS6这个版本,虽然是比较久远的版本,但是在功能上也是十分全面和强大的,作为一名平面设计师的话,AICS6的现有的功能已经能够应付几乎所有的设计工作了……到底AICC2019的功能是不是...
- 手机可以装电脑系统吗(手机可以装电脑系统吗怎么装)
-
答题公式1:手机可以通过数据线或无线连接的方式给电脑装系统。手机安装系统需要一定的技巧和软件支持,一般需要通过数据线或无线连接的方式与电脑连接,并下载相应的软件和系统文件进行安装。对于大部分手机用户来...
- 一周热门
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)
