百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

还不会Elasticsearch?看这些知识入门刚刚好

liuian 2025-07-08 20:07 45 浏览

作者:MacroZheng 链接:
https://juejin.im/post/5e8c7d65518825736512d097

记得刚接触Elasticsearch的时候,没找啥资料,直接看了遍Elasticsearch的中文官方文档,中文文档很久没更新了,一直都是2.3的版本。最近又重新看了遍6.0的官方文档,由于官方文档介绍的内容比较多,每次看都很费力,所以这次整理了其中最常用部分,写下了这篇入门教程,希望对大家有所帮助。

简介

Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式的全文搜索引擎,基于restful web接口。Elasticsearch是用Java语言开发的,基于Apache协议的开源项目,是目前最受欢迎的企业搜索引擎。Elasticsearch广泛运用于云计算中,能够达到实时搜索,具有稳定,可靠,快速的特点。

安装

Windows下的安装

Elasticsearch

  • 下载Elasticsearch 6.2.2的zip包,并解压到指定目录,下载地址:www.elastic.co/cn/download…



  • 安装中文分词插件,在elasticsearch-6.2.2\bin目录下执行以下命令;
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.2/elasticsearch-analysis-ik-6.2.2.zip
复制代码


  • 运行bin目录下的elasticsearch.bat启动Elasticsearch;

Kibana

  • 下载Kibana,作为访问Elasticsearch的客户端,请下载6.2.2版本的zip包,并解压到指定目录,下载地址:artifacts.elastic.co/downloads/k…
  • 运行bin目录下的kibana.bat,启动Kibana的用户界面


  • 访问http://localhost:5601 即可打开Kibana的用户界面:

Linux下的安装

Elasticsearch

  • 下载elasticsearch 6.4.0的docker镜像;
docker pull elasticsearch:6.4.0
  • 修改虚拟内存区域大小,否则会因为过小而无法启动;
sysctl -w vm.max_map_count=262144
  • 使用docker命令启动;
docker run -p 9200:9200 -p 9300:9300 --name elasticsearch \
-e "discovery.type=single-node" \
-e "cluster.name=elasticsearch" \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-d elasticsearch:6.4.0
  • 启动时会发现/usr/share/elasticsearch/data目录没有访问权限,只需要修改该目录的权限,再重新启动即可;
chmod 777 /mydata/elasticsearch/data/
  • 安装中文分词器IKAnalyzer,并重新启动;
docker exec -it elasticsearch /bin/bash
#此命令需要在容器中运行
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zip
docker restart elasticsearch
  • 访问会返回版本信息:http://192.168.3.101:9200/

Kibina

  • 下载kibana 6.4.0的docker镜像;
docker pull kibana:6.4.0
  • 使用docker命令启动;
docker run --name kibana -p 5601:5601 \
--link elasticsearch:es \
-e "elasticsearch.hosts=http://es:9200" \
-d kibana:6.4.0
  • 访问地址进行测试:http://192.168.3.101:5601

相关概念

  • Near Realtime(近实时):Elasticsearch是一个近乎实时的搜索平台,这意味着从索引文档到可搜索文档之间只有一个轻微的延迟(通常是一秒钟)。
  • Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。
  • Node(节点):节点是指属于集群的单个Elasticsearch实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为elasticsearch的群集。
  • Index(索引):索引是一些具有相似特征的文档集合,类似于MySql中数据库的概念。
  • Type(类型):类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似MySql中表的概念。注意:在Elasticsearch 6.0.0及更高的版本中,一个索引只能包含一个类型。
  • Document(文档):文档是可被索引的基本信息单位,以JSON形式表示,类似于MySql中行记录的概念。
  • Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。
  • Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。

集群状态查看

  • 查看集群健康状态;
GET /_cat/health?v
epoch      timestamp cluster       status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1585552862 15:21:02  elasticsearch yellow          1         1     27  27    0    0       25             0                  -                 51.9
  • 查看节点状态;
GET /_cat/nodes?v
ip        heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
127.0.0.1           23          94  28                          mdi       *      KFFjkpV
  • 查看所有索引信息;
GET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.size
green  open   pms      xlU0BjEoTrujDgeL6ENMPw   1   0         41            0     30.5kb         30.5kb
green  open   .kibana  ljKQtJdwT9CnLrxbujdfWg   1   0          2            1     10.7kb         10.7kb

索引操作

  • 创建索引并查看;
PUT /customer
GET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.size
yellow open   customer 9uPjf94gSq-SJS6eOuJrHQ   5   1          0            0       460b           460b
green  open   pms      xlU0BjEoTrujDgeL6ENMPw   1   0         41            0     30.5kb         30.5kb
green  open   .kibana  ljKQtJdwT9CnLrxbujdfWg   1   0          2            1     10.7kb         10.7kb
  • 删除索引并查看;
DELETE /customer
GET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.size
green  open   pms      xlU0BjEoTrujDgeL6ENMPw   1   0         41            0     30.5kb         30.5kb
green  open   .kibana  ljKQtJdwT9CnLrxbujdfWg   1   0          2            1     10.7kb         10.7kb

类型操作

  • 查看文档的类型;
GET /bank/account/_mapping
{
  "bank": {
    "mappings": {
      "account": {
        "properties": {
          "account_number": {
            "type": "long"
          },
          "address": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "age": {
            "type": "long"
          },
          "balance": {
            "type": "long"
          },
          "city": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "email": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "employer": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "firstname": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "gender": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "lastname": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          },
          "state": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            }
          }
        }
      }
    }
  }
}

文档操作

  • 在索引中添加文档;
PUT /customer/doc/1
{
  "name": "John Doe"
}
{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 1,
  "result": "created",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 3,
  "_primary_term": 1
}
  • 查看索引中的文档;
GET /customer/doc/1
{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 2,
  "found": true,
  "_source": {
    "name": "John Doe"
  }
}
  • 修改索引中的文档:
POST /customer/doc/1/_update
{
  "doc": { "name": "Jane Doe" }
}
{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 2,
  "result": "updated",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 4,
  "_primary_term": 1
}
  • 删除索引中的文档;
DELETE /customer/doc/1
{
  "_index": "customer",
  "_type": "doc",
  "_id": "1",
  "_version": 3,
  "result": "deleted",
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 2,
  "_primary_term": 1
  • 对索引中的文档执行批量操作;
POST /customer/doc/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
{
  "took": 45,
  "errors": false,
  "items": [
    {
      "index": {
        "_index": "customer",
        "_type": "doc",
        "_id": "1",
        "_version": 3,
        "result": "updated",
        "_shards": {
          "total": 2,
          "successful": 1,
          "failed": 0
        },
        "_seq_no": 5,
        "_primary_term": 1,
        "status": 200
      }
    },
    {
      "index": {
        "_index": "customer",
        "_type": "doc",
        "_id": "2",
        "_version": 1,
        "result": "created",
        "_shards": {
          "total": 2,
          "successful": 1,
          "failed": 0
        },
        "_seq_no": 0,
        "_primary_term": 1,
        "status": 201
      }
    }
  ]
}

数据搜索

查询表达式(Query DSL)是一种非常灵活又富有表现力的查询语言,Elasticsearch使用它可以以简单的JSON接口来实现丰富的搜索功能,下面的搜索操作都将使用它。

数据准备

  • 首先我们需要导入一定量的数据用于搜索,使用的是银行账户表的例子,数据结构如下:
{
    "account_number": 0,
    "balance": 16623,
    "firstname": "Bradshaw",
    "lastname": "Mckenzie",
    "age": 29,
    "gender": "F",
    "address": "244 Columbus Place",
    "employer": "Euron",
    "email": "bradshawmckenzie@euron.com",
    "city": "Hobucken",
    "state": "CO"
}
  • 我们先复制下需要导入的数据,数据地址: github.com/macrozheng/…
  • 然后直接使用批量操作来导入数据,注意本文所有操作都在Kibana的Dev Tools中进行;
POST /bank/account/_bulk
{
  "index": {
    "_id": "1"
  }
}
{
  "account_number": 1,
  "balance": 39225,
  "firstname": "Amber",
  "lastname": "Duke",
  "age": 32,
  "gender": "M",
  "address": "880 Holmes Lane",
  "employer": "Pyrami",
  "email": "amberduke@pyrami.com",
  "city": "Brogan",
  "state": "IL"
}
......省略若干条数据


  • 导入完成后查看索引信息,可以发现bank索引中已经创建了1000条文档。
GET /_cat/indices?v
health status index    uuid                   pri rep docs.count docs.deleted store.size pri.store.size
yellow open   bank     HFjxDLNLRA-NATPKUQgjBw   5   1       1000            0    474.6kb        474.6kb

搜索入门

  • 最简单的搜索,使用match_all来表示,例如搜索全部;
GET /bank/_search
{
  "query": { "match_all": {} }
}
  • 分页搜索,from表示偏移量,从0开始,size表示每页显示的数量;
GET /bank/_search
{
  "query": { "match_all": {} },
  "from": 0,
  "size": 10
}


  • 搜索排序,使用sort表示,例如按balance字段降序排列;
GET /bank/_search
{
  "query": { "match_all": {} },
  "sort": { "balance": { "order": "desc" } }
}



  • 搜索并返回指定字段内容,使用_source表示,例如只返回account_number和balance两个字段内容:
GET /bank/_search
{
  "query": { "match_all": {} },
  "_source": ["account_number", "balance"]
}



条件搜索

  • 条件搜索,使用match表示匹配条件,例如搜索出account_number为20的文档:
GET /bank/_search
{
  "query": {
    "match": {
      "account_number": 20
    }
  }
}



  • 文本类型字段的条件搜索,例如搜索address字段中包含mill的文档,对比上一条搜索可以发现,对于数值类型match操作使用的是精确匹配,对于文本类型使用的是模糊匹配;
GET /bank/_search
{
  "query": {
    "match": {
      "address": "mill"
    }
  },
  "_source": [
    "address",
    "account_number"
  ]
}


  • 短语匹配搜索,使用match_phrase表示,例如搜索address字段中同时包含mill和lane的文档:
GET /bank/_search
{
  "query": {
    "match_phrase": {
      "address": "mill lane"
    }
  }
}



组合搜索

  • 组合搜索,使用bool来进行组合,must表示同时满足,例如搜索address字段中同时包含mill和lane的文档;
GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "address": "mill" } },
        { "match": { "address": "lane" } }
      ]
    }
  }
}



  • 组合搜索,should表示满足其中任意一个,搜索address字段中包含mill或者lane的文档;
GET /bank/_search
{
  "query": {
    "bool": {
      "should": [
        { "match": { "address": "mill" } },
        { "match": { "address": "lane" } }
      ]
    }
  }
}



  • 组合搜索,must_not表示同时不满足,例如搜索address字段中不包含mill且不包含lane的文档;
GET /bank/_search
{
  "query": {
    "bool": {
      "must_not": [
        { "match": { "address": "mill" } },
        { "match": { "address": "lane" } }
      ]
    }
  }
}



  • 组合搜索,组合must和must_not,例如搜索age字段等于40且state字段不包含ID的文档;
GET /bank/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "age": "40" } }
      ],
      "must_not": [
        { "match": { "state": "ID" } }
      ]
    }
  }
}


过滤搜索

  • 搜索过滤,使用filter来表示,例如过滤出balance字段在20000~30000的文档;
GET /bank/_search
{
  "query": {
    "bool": {
      "must": { "match_all": {} },
      "filter": {
        "range": {
          "balance": {
            "gte": 20000,
            "lte": 30000
          }
        }
      }
    }
  }
}



搜索聚合

  • 对搜索结果进行聚合,使用aggs来表示,类似于MySql中的group by,例如对state字段进行聚合,统计出相同state的文档数量;
GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword"
      }
    }
  }
}



  • 嵌套聚合,例如对state字段进行聚合,统计出相同state的文档数量,再统计出balance的平均值;
GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword"
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}



  • 对聚合搜索的结果进行排序,例如按balance的平均值降序排列;
GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_state": {
      "terms": {
        "field": "state.keyword",
        "order": {
          "average_balance": "desc"
        }
      },
      "aggs": {
        "average_balance": {
          "avg": {
            "field": "balance"
          }
        }
      }
    }
  }
}



  • 按字段值的范围进行分段聚合,例如分段范围为age字段的[20,30] [30,40] [40,50],之后按gender统计文档个数和balance的平均值;
GET /bank/_search
{
  "size": 0,
  "aggs": {
    "group_by_age": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 20,
            "to": 30
          },
          {
            "from": 30,
            "to": 40
          },
          {
            "from": 40,
            "to": 50
          }
        ]
      },
      "aggs": {
        "group_by_gender": {
          "terms": {
            "field": "gender.keyword"
          },
          "aggs": {
            "average_balance": {
              "avg": {
                "field": "balance"
              }
            }
          }
        }
      }
    }
  }
}


感悟

从正式成为一名程序员的那天起,注定要进行没有止境的学习,想要进阶高级或者专家,就要坚持每天都高效的学习,不要给自己的懒惰找借口,“什么我也想学习可是又没有资源”,这次我给你整理好了,我看你还有啥理由!私信回复【666】送你

相关推荐

完整版xp系统下载(xp系统最新版本安装包)

2012年前的可以无压力安装XP系统,搜索:itellyou.cn这里有WINDOWS几乎所有的系统。windowsXP系统升级的具体操作步骤如下:1、首先我们将老毛桃装机工具下载到U盘,将老毛桃...

ps下载电脑版官方下载(ps电脑版下载地址)

目前在电脑上免费下载PS是不太可能的。主要有以下几个原因。1.AdobePhotoshop(简称PS)是一款商业软件,它需要用户购买和激活许可证才能合法使用。从正规渠道下载并且获得合法授权需要付费...

迅猛兔加速器(迅猛兔加速器官网)

要下载迅猛兔加速器,首先需要在官网或其他可信的下载平台上搜索并找到该软件。一般情况下,官网提供的下载链接是最稳定和安全的选择。在下载之前,确保您的电脑或手机系统能够支持使用此软件,并检查下载链接的文件...

台式电脑怎么重做系统(台式电脑怎么重装系统)

你好,电脑系统重装的步骤如下:1.备份数据:在重装系统之前,需要备份电脑中的重要数据,以免数据丢失。2.准备安装介质:需要准备一个安装介质,可以是光盘、U盘或者硬盘分区镜像等。3.设置启动顺序:将电脑...

微软office2007安装包(office2007安装包怎么安装)
  • 微软office2007安装包(office2007安装包怎么安装)
  • 微软office2007安装包(office2007安装包怎么安装)
  • 微软office2007安装包(office2007安装包怎么安装)
  • 微软office2007安装包(office2007安装包怎么安装)
电脑无法从u盘启动怎么办(电脑无法从u盘启动解决方法)
电脑无法从u盘启动怎么办(电脑无法从u盘启动解决方法)

电脑的进入不了u盘启动的解决方法:一、我们第一步需要确定的是你的u盘在别的电脑上检查一下U盘是否可读,如果可读的话是否成功制作了u盘启动盘了,因为想要启动进入pe的话需要u盘具备启动的功能。  二、如果你检查好自己的u盘已经成功制作了启动盘...

2026-01-13 10:05 liuian

cpu频率越高越好吗(cpu频率越高速度越快吗)

高好。CPU的频率是影响CPU的一个重要因素,直观上来说,频率的高低影响了CPU的性能。频率越高,CPU性能越好;不过需要注意的是,CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算...

注册表清理软件(注册表清理软件残留软件)

你好!关于注册表清理工具的推荐,以下是几个值得推荐的工具:1.CCleaner:这是一款功能强大的免费清理工具,可以有效地清理注册表、垃圾文件等,使用简单方便。2.WiseRegistryCl...

显卡驱动升级有好处吗(显卡驱动升级有什么坏处)

显卡的新版本驱动能修改一些游戏,图形显示的BUG,所以新版本的显卡驱动能有效的利用显卡的资源,提高游戏性能。不仅可以修正旧版本中的BUG,而且可以进一步挖掘显卡硬件的功能,使得部分硬件功能得以充分发挥...

w7旗舰版系统安装无线网卡(win7系统安装无线网卡)

要在Windows7中安装无线网卡,请按照以下步骤进行操作:1.检查您的计算机是否已安装无线网卡。您可以通过右键单击“我的电脑”并选择“属性”来查看计算机的硬件设置。如果计算机没有内置无线网卡,则...

腾达路由器管理员密码是什么

1、旧版本的腾达路由器,默认的用户名和密码都是:admin。?旧版腾达路由器的初始密码是:admin2、目前腾达新推出的无线路由器,在出厂状态下,是没有初始管理员密码的。?新版腾达路由器没有初始密码新...

电脑开机只有一个鼠标箭头黑屏

解决方法如下:1、同时按“ctrl+shlft+exc”键,调出任务管理器。2、点击任务管理器左下角的“详细信息”。3、然后点击左上角“文件”里的“运行新任务”。4、弹出新窗口,输入“explorer...

把vx好友删了想找回聊天记录

没有啦,联系人列表里没有了,聊天记录就没有了,无法进行恢复,收不到好友消息微信删除好友时会同时删除与该联系人的聊天记录,不过对方还是有双方的微信聊天记录的,删除好友后将无法发送消息给对方,所以伙伴们在...

163邮箱密码正确就是登不上(163邮箱密码一直错误)

邮箱不能登录或登录异常的原因有很多种哦,如您浏览器“隐私”或“安全”级别设置过高,或用户名、密码输入不正确、较长时间未登录被冻结等都会导致不能登录或登录异常。请您先检查一下哦。解决无法登录的方法有:...

移动硬盘维修费用大概是多少钱

芯片不需要多少钱,但数据恢复就另当别论了。。。如果认识人就帮你换个芯片板,要不了多少钱,如果是硬盘盒的芯片板坏了你就乾脆换个盒子,80左右。如果是硬盘芯片坏了,那就不好办了,没人愿意给你换阿。。。但如...