百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Ubuntu os中部署Deep seek(ubuntu部署django)

liuian 2025-06-03 23:27 7 浏览

1. 环境准备


1.1 硬件要求


o 操作系统: Ubuntu 24.04 LTS

o GPU(可选): NVIDIA GPU(建议至少 24GB VRAM,如 RTX 4090 / A100)

o CPU(仅用于 CPU 推理): 至少 8 核,推荐 16 核以上

o 内存: 至少 32GB(建议 64GB 以上)

o 硬盘空间: 至少 60GB(用于模型存储)


2. 安装必要的软件和驱动


2.1 更新系统


sudo apt update && sudo apt upgrade -y


2.2 安装 NVIDIA 驱动(如果使用 GPU)


检查显卡型号:


lspci | grep -i nvidia


安装 NVIDIA 官方驱动(例如 535 版本):


sudo apt install -y nvidia-driver-535

reboot # 重启系统以加载新驱动


验证驱动安装:


nvidia-smi


如果输出类似以下内容,说明驱动安装成功:


+-----------------------------------------------------------------------------+

| NVIDIA-SMI 535.113.01 Driver Version: 535.113.01 CUDA Version: 12.2 |

|-------------------------------+----------------------+----------------------+


2.3 安装 CUDA 和 cuDNN(GPU 用户)


安装 CUDA


sudo apt install -y cuda


安装 cuDNN


sudo apt install -y libcudnn8


验证 CUDA:


nvcc --version


3. 创建 Python 环境


3.1 安装 Miniconda(推荐)


wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

bash Miniconda3-latest-Linux-x86_64.sh


安装完成后,关闭终端重新打开,或手动运行:


source ~/.bashrc


3.2 创建 Python 环境


conda create -n deepseek python=3.10 -y

conda activate deepseek


4. 安装 PyTorch 和 DeepSeek 依赖


4.1 安装 PyTorch


GPU 版本


pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118


CPU 版本


pip install torch torchvision torchaudio


测试 PyTorch 是否安装成功:


python -c "import torch; print(torch.cuda.is_available())"


如果输出 True,说明 PyTorch 可以使用 GPU。


4.2 安装 transformers、accelerate 和 vllm


pip install transformers accelerate vllm


5. 下载 DeepSeek 代码和模型


5.1 下载 DeepSeek 代码


git clone https://github.com/DeepSeek-AI/DeepSeek-LLM.git

cd DeepSeek-LLM


5.2 下载 DeepSeek 7B 模型


官方 Hugging Face 地址:
https://huggingface.co/DeepSeek-AI/deepseek-llm-7b


手动下载


mkdir -p models/deepseek-llm-7b

cd models/deepseek-llm-7b

wget https://huggingface.co/DeepSeek-AI/deepseek-llm-7b/resolve/main/config.json

wget https://huggingface.co/DeepSeek-AI/deepseek-llm-7b/resolve/main/model.safetensors

wget https://huggingface.co/DeepSeek-AI/deepseek-llm-7b/resolve/main/tokenizer.model


(或使用 git-lfs 下载完整模型)


git lfs install

git clone https://huggingface.co/DeepSeek-AI/deepseek-llm-7b models/deepseek-llm-7b


6. 运行 DeepSeek


6.1 运行 DeepSeek 推理


创建 run.py 文件:


from transformers import AutoModelForCausalLM, AutoTokenizer

import torch


model_name = "models/deepseek-llm-7b" # 本地模型路径

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")


inputs = tokenizer("你好,DeepSeek!", return_tensors="pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens=100)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))


运行:


python run.py


7. 运行 Web 界面


可以使用 FastAPI + Gradio 构建 Web 界面。


7.1 安装依赖


pip install fastapi gradio uvicorn


7.2 创建 web_app.py


from fastapi import FastAPI

import gradio as gr

from transformers import AutoModelForCausalLM, AutoTokenizer

import torch


app = FastAPI()


# 加载模型

model_name = "models/deepseek-llm-7b"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")


def generate_response(prompt):

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens=100)

return tokenizer.decode(outputs[0], skip_special_tokens=True)


# Gradio 界面

def chatbot(prompt):

return generate_response(prompt)


iface = gr.Interface(fn=chatbot, inputs="text", outputs="text")


@app.get("/")

def read_root():

return {"message": "DeepSeek Web Server is Running"}


# 启动 Gradio

@app.get("/webui")

def launch_gradio():

iface.launch(share=True)


7.3 运行 Web 界面


uvicorn web_app:app --host 0.0.0.0 --port 8000


在浏览器中打开:


http://localhost:8000/webui


8. 总结


步骤 命令

更新系统 sudo apt update && sudo apt upgrade -y

安装 GPU 驱动 sudo apt install -y nvidia-driver-535

安装 CUDA 和 cuDNN sudo apt install -y cuda libcudnn8

创建 Python 环境 conda create -n deepseek python=3.10 -y && conda activate deepseek

安装 PyTorch pip install torch torchvision torchaudio --index-url
https://download.pytorch.org/whl/cu118

安装 transformers pip install transformers accelerate vllm

下载模型 git clone
https://huggingface.co/DeepSeek-AI/deepseek-llm-7b models/deepseek-llm-7b

运行推理 python run.py

运行 Web 界面 uvicorn web_app:app --host 0.0.0.0 --port 8000


这样,你就可以在 Ubuntu 24.04 上部署 DeepSeek-LLM 了!

相关推荐

结构力学!EI会议图表规范秘籍(ei会议排版)

推荐会议:国际结构与材料工程进展大会(ISME2026)会议编号:EI#73521截稿时间:2026年3月10日召开时间/地点:2026年8月15-17日·德国柏林论文集上线:会后4...

如何在simulink中获取足端轨迹?(simulink怎么设置触发角)

哈喽大家好,我是咕噜美乐蒂。很高兴又和大家见面啦。在机器人控制的应用中,足端轨迹是一个非常重要的参数,可以用来评估机器人的运动性能和精度。在Simulink中获取足端轨迹需要考虑到模型的复杂性、仿...

JCMsuite:旋转对称发射器(旋转式发射)

示例取自Gregersen等人[1]。几何形状为非理想微柱结构:单光子柱发射器(旋转对称)多层膜是在布局文件layout.jcm中由外部形状为梯形的特殊原始多层创建的(见下文)。参数扫描Matlab(...

动态离散周期变换技术突破:无ECG参考的生理信号精准解析

来源:电子产品世界摘要本文介绍了新型滑动离散周期变换(DPT)算法,可设计用于处理生理信号,尤其是脉搏血氧仪采集的光电容积脉搏波(PPG)信号。该算法采用正弦基函数进行周期域分析,可解决随机噪声和非平...

电气EI源刊避坑指南速存(电气工程开源期刊)

期刊推荐:《IEEETransactionsonPowerSystems》刊号:ISSN0885-8950影响因子:8.5(最新JCR数据)分区:中科院1区|JCRQ1版面费:约2200美...

Matlab基础入门手册(第五章:脚本/函数)

第五章脚本和函数1.44循环和条件语句1.循环语句和条件语句的用法2.说明循环语句:for,while条件语句:if,switch3.实例演示%1_44forx=1:5%简单for程序实例...

利用GPT4-V及Langchain实现多模态RAG

多模态RAG将是2024年AI应用架构发展的一个重要趋势,在前面的一篇文章里提到llama-index在这方面的尝试《利用GPT4-V及llama-index构建多模态RAG应用》,本文[1]中将以另...

WPF基础之UI布局(wpf ui界面设计)

知识点:WPF中的布局控件主要有以下几种:StackPanel:栈面板,可以将元素排列成一行或者一列。其特点是:每个元素各占一行或者一列。WrapPanel:环绕面板,将各个控件从左至右按照行或列的顺...

27.WPF 形状(wps 形状)

摘要  在WPF用户界面中,绘制2D图形内容的最简单方法是使用形状(shape)——专门用于表示简单的直线、椭圆、矩形以及多变形的一些类。从技术角度看,形状就是所谓的绘图图元(primitive)。可...

WPF与WinForm的本质区别(wpf和winui)

在Windows应用程序开发中,WinForm和WPF是两种主要的技术框架。它们各自有不同的设计理念、渲染机制和开发模式。本文将详细探讨WPF与WinForm的本质区别,并通过示例进行说明。渲染机制W...

.NET跨平台绘图基础库--SkiaSharp

SkiaSharp是一个跨平台的2D图形API,用于.NET平台,基于Google的Skia图形库。它提供了全面的2DAPI,可以在移动、服务器和桌面模型上渲染图像。SkiaS...

django python数据中心、客户、机柜、设备资源管理平台源码分享

先转发后关注,私信“资源”即可免费获取源码下载链接!本项目一个开源的倾向于数据中心运营商而开发的,拥有数据中心、客户、机柜、设备、跳线、物品、测试、文档等一些列模块的资源管理平台,解决各类资源集中管理...

在树莓派上:安装Ubuntu Server 20.04

什么是树莓派树莓派是英国树莓派基金会(https://www.raspberrypi.org)开发的卡片式电脑,采用高通的BCM2711ARM64处理器,可用于机器人、物联网、边缘计算、通用计算等多...

手把手教你搭建深度学习环境Pytorch版-Ubuntu

引言很多搞人工智能的小伙伴,刚开始学习,往往摸不着头脑怎么跑代码。跑代码的前提是要有个环境。本篇结合自己的亲身经历,带你搭建环境。相关知识Ubuntu是Linux系统的一种显卡驱动和cuda是两个不同...

干货,Python竟然可以用Kivy编写和打包安卓APP

请大家多多点赞,关注和分享在上一篇文章中,我们介绍了在Python中使用BeeWare框架编写图形程序并将其打包为安卓的apk文件程序。爆强!直接把Python编写的图形程序打包为安卓A...