百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

1.3w字,一文详解死锁

liuian 2025-04-27 14:44 36 浏览

死锁(Dead Lock)指的是两个或两个以上的运算单元(进程、线程或协程),都在等待对方停止执行,以取得系统资源,但是没有一方提前退出,就称为死锁。

1.死锁演示

死锁的形成分为两个方面,一个是使用内置锁 synchronized 形成的死锁,另一种是使用显式锁 Lock 实现的死锁,接下来我们分别来看。

1.1 死锁 synchronized 版

public class DeadLockExample {
    public static void main(String[] args) {
        Object lockA = new Object(); // 创建锁 A
        Object lockB = new Object(); // 创建锁 B

        // 创建线程 1
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 先获取锁 A
                synchronized (lockA) {
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    // 尝试获取锁 B
                    System.out.println("线程 1:等待获取 B...");
                    synchronized (lockB) {
                        System.out.println("线程 1:获取到锁 B!");
                    }
                }
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 先获取锁 B
                synchronized (lockB) {
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    // 尝试获取锁 A
                    System.out.println("线程 2:等待获取 A...");
                    synchronized (lockA) {
                        System.out.println("线程 2:获取到锁 A!");
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }
}

以上程序的执行结果如下:

从上述结果可以看出,线程 1 和线程 2 都在等待对方释放锁,这样就造成了死锁问题。

1.2 死锁 Lock 版

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class DeadLockByReentrantLockExample {
    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockA.lock(); // 加锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    lockB.lock(); // 加锁
                    try {
                        System.out.println("线程 1:获取到锁 B!");
                    } finally {
                        lockB.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                }
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockB.unlock(); // 释放锁
                }
            }
        });
        t2.start(); // 运行线程
    }
}

以上程序的执行结果如下:

2.死锁产生原因

通过以上示例,我们可以得出结论,要产生死锁需要满足以下 4 个条件

  1. 互斥条件:指运算单元(进程、线程或协程)对所分配到的资源具有排它性,也就是说在一段时间内某个锁资源只能被一个运算单元所占用。
  2. 请求和保持条件:指运算单元已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它运算单元占有,此时请求运算单元阻塞,但又对自己已获得的其它资源保持不放。
  1. 不可剥夺条件:指运算单元已获得的资源,在未使用完之前,不能被剥夺。
  2. 环路等待条件:指在发生死锁时,必然存在运算单元和资源的环形链,即运算单元正在等待另一个运算单元占用的资源,而对方又在等待自己占用的资源,从而造成环路等待的情况。

只有以上 4 个条件同时满足,才会造成死锁问题。

3.死锁排查工具

如果程序出现死锁问题,可通过以下 4 种方案中的任意一种进行分析和排查。

3.1 jstack

我们在使用 jstack 之前,先要通过 jps 得到运行程序的进程 ID,使用方法如下:

“jps -l”可以查询本机所有的 Java 程序,jps(Java Virtual Machine Process Status Tool)是 Java 提供的一个显示当前所有 Java 进程 pid 的命令,适合在 linux/unix/windows 平台上简单查看当前 Java 进程的一些简单情况,“-l”用于输出进程 pid 和运行程序完整路径名(包名和类名)。


有了进程 ID(PID)之后,我们就可以使用“jstack -l PID”来发现死锁问题了,如下图所示:

jstack 用于生成 Java 虚拟机当前时刻的线程快照,“-l”表示长列表(long),打印关于锁的附加信息。


PS:可以使用 jstack -help 查看更多命令使用说明。

3.2 jconsole

使用 jconsole 需要打开 JDK 的 bin 目录,找到 jconsole 并双击打开,如下图所示:

然后选择要调试的程序,如下图所示:

之后点击连接进入,选择“不安全的连接”进入监控主页,如下图所示:

之后切换到“线程”模块,点击“检测死锁”按钮,如下图所示:

之后稍等片刻就会检测出死锁的相关信息,如下图所示:

3.3 jvisualvm

jvisualvm 也在 JDK 的 bin 目录中,同样是双击打开:

稍等几秒之后,jvisualvm 中就会出现本地的所有 Java 程序,如下图所示:

双击选择要调试的程序:

单击鼠标进入“线程”模块,如下图所示:

从上图可以看出,当我们切换到线程一栏之后就会直接显示出死锁信息,之后点击“线程 Dump”生成死锁的详情信息,如下图所示:

3.4 jmc

jmc 是 Oracle Java Mission Control 的缩写,是一个对 Java 程序进行管理、监控、概要分析和故障排查的工具套件。它也是在 JDK 的 bin 目录中,同样是双击启动,如下图所示:

jmc 主页信息如下:

之后选中要排查的程序,右键“启动 JMX 控制台”查看此程序的详细内容,如下图所示:

然后点击“线程”,勾中“死锁检测”就可以发现死锁和死锁的详情信息,如下图所示:

4.死锁解决方案

4.1 死锁解决方案分析

接下来我们来分析一下,产生死锁的 4 个条件,哪些是可以破坏的?哪些是不能被破坏的?

  • 互斥条件:系统特性,不能被破坏。
  • 请求和保持条件:可以被破坏。
  • 不可剥夺条件:系统特性,不能被破坏。
  • 环路等待条件:可以被破坏。


通过上述分析,我们可以得出结论,我们只能通过破坏请求和保持条件或者是环路等待条件,从而来解决死锁的问题,那上线,我们就先从破坏“环路等待条件”开始来解决死锁问题。

4.2 解决方案1:顺序锁

所谓的顺序锁指的是通过有顺序的获取锁,从而避免产生环路等待条件,从而解决死锁问题的。


当我们没有使用顺序锁时,程序的执行可能是这样的:

线程 1 先获取了锁 A,再获取锁 B,线程 2 与 线程 1 同时执行,线程 2 先获取锁 B,再获取锁 A,这样双方都先占用了各自的资源(锁 A 和锁 B)之后,再尝试获取对方的锁,从而造成了环路等待问题,最后造成了死锁的问题。


此时我们只需要将线程 1 和线程 2 获取锁的顺序进行统一,也就是线程 1 和线程 2 同时执行之后,都先获取锁 A,再获取锁 B,执行流程如下图所示:

因为只有一个线程能成功获取到锁 A,没有获取到锁 A 的线程就会等待先获取锁 A,此时得到锁 A 的线程继续获取锁 B,因为没有线程争抢和拥有锁 B,那么得到锁 A 的线程就会顺利的拥有锁 B,之后执行相应的代码再将锁资源全部释放,然后另一个等待获取锁 A 的线程就可以成功获取到锁资源,执行后续的代码,这样就不会出现死锁的问题了。


顺序锁的实现代码如下所示:

public class SolveDeadLockExample {
    public static void main(String[] args) {
        Object lockA = new Object(); // 创建锁 A
        Object lockB = new Object(); // 创建锁 B
        // 创建线程 1
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (lockA) {
                    System.out.println("线程 1:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("线程 1:等待获取 B...");
                    synchronized (lockB) {
                        System.out.println("线程 1:获取到锁 B!");
                    }
                }
            }
        });
        t1.start(); // 运行线程
        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (lockA) {
                    System.out.println("线程 2:获取到锁 A!");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("线程 2:等待获取B...");
                    synchronized (lockB) {
                        System.out.println("线程 2:获取到锁 B!");
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }
}

以上程序的执行结果如下:

从上述执行结果可以看出,程序并没有出现死锁的问题。

4.3 解决方案2:轮询锁

轮询锁是通过打破“请求和保持条件”来避免造成死锁的,它的实现思路简单来说就是通过轮询来尝试获取锁,如果有一个锁获取失败,则释放当前线程拥有的所有锁,等待下一轮再尝试获取锁。


轮询锁的实现需要使用到 ReentrantLock 的 tryLock 方法,具体实现代码如下:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {
    
    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockB.unlock(); // 释放锁
                }
            }
        });
        t2.start(); // 运行线程
    }
    
     /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB) {
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }
            // 等待一秒再继续执行
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上程序的执行结果如下:


从上述结果可以看出,以上代码也没有出现死锁的问题。


4.4 轮询锁优化

使用轮询锁虽然可以解决死锁的问题,但并不是完美无缺的,比如以下这些问题。

4.4.1 问题1:死循环

以上简易版的轮询锁,如果遇到有一个线程一直霸占或者长时间霸占锁资源的情况,就会导致这个轮询锁进入死循环的状态,它会尝试一直获取锁资源,这样就会造成新的问题,带来不必要的性能开销,具体示例如下。

反例

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {

    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 如果此处代码未执行,线程 2 一直未释放锁资源
                    // lockB.unlock(); 
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB) {
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }
            // 等待一秒再继续执行
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

从上述结果可以看出,线程 1 轮询锁进入了死循环的状态。

优化版

针对以上死循环的情况,我们可以改进的思路有以下两种:

  1. 添加最大次数限制:如果经过了 n 次尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询(失败策略可以是记录日志或其他操作);
  2. 添加最大时长限制:如果经过了 n 秒尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询。

以上策略任选其一就可以解决死循环的问题,出于实现成本的考虑,我们可以采用轮询最大次数的方式来改进轮询锁,具体实现代码如下:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {

    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB, 3);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 线程 2 忘记释放锁资源
                    // lockB.unlock(); // 释放锁
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     *
     * maxCount:最大轮询次数
     */
    public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
        // 轮询次数计数器
        int count = 0;
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }

            // 判断是否已经超过最大次数限制
            if (count++ > maxCount) {
                // 终止循环
                System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                return;
            }

            // 等待一秒再继续尝试获取锁
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

从以上结果可以看出,当我们改进之后,轮询锁就不会出现死循环的问题了,它会尝试一定次数之后终止执行。

4.4.2 问题2:线程饿死

我们以上的轮询锁的轮询等待时间是固定时间,如下代码所示:

// 等待 1s 再尝试获取(轮询)锁
try {
    Thread.sleep(1000);
} catch (InterruptedException e) {
    e.printStackTrace();
}

这样在特殊情况下会造成线程饿死的问题,也就是轮询锁一直获取不到锁的问题,比如以下示例。

反例

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {

    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB, 3);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } finally {
                        lockB.unlock(); // 释放锁
                    }
                    // 等待一秒之后继续执行
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
        // 循环次数计数器
        int count = 0;
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }

            // 判断是否已经超过最大次数限制
            if (count++ > maxCount) {
                // 终止循环
                System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                return;
            }

            // 等待一秒再继续尝试获取锁
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

从上述结果可以看出,线程 1(轮询锁)一直未成功获取到锁,造成这种结果的原因是:线程 1 每次轮询的等待时间为固定的 1s,而线程 2 也是相同的频率,每 1s 获取一次锁,这样就会导致线程 2 会一直先成功获取到锁,而线程 1 则会一直处于“饿死”的情况,执行流程如下图所示:

优化版

接下来,我们可以将轮询锁的固定等待时间,改进为固定时间 + 随机时间的方式,这样就可以避免因为获取锁的频率一致,而造成轮询锁“饿死”的问题了,具体实现代码如下:

import java.util.Random;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {
    private static Random rdm = new Random();

    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB, 3);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } finally {
                        lockB.unlock(); // 释放锁
                    }
                    // 等待一秒之后继续执行
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
        // 循环次数计数器
        int count = 0;
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }

            // 判断是否已经超过最大次数限制
            if (count++ > maxCount) {
                // 终止循环
                System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                return;
            }

            // 等待一定时间(固定时间 + 随机时间)之后再继续尝试获取锁
            try {
                Thread.sleep(300 + rdm.nextInt(8) * 100); // 固定时间 + 随机时间
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

从上述结果可以看出,线程 1(轮询锁)加入随机等待时间之后就不会出现线程饿死的问题了。

5.总结

本文介绍了死锁的概念,以及产生死锁的 4 个条件,排查死锁可以通过本文提供的 4 种工具中的任意一种来检测,从易用性和性能方面来考虑,推荐使用 jconsole 或 jvisualvm,最后我们介绍了死锁问题的两种解决方案:顺序锁和轮询锁。

相关推荐

联想电脑如何截屏截图(联想电脑上怎样截图)

用lenovo电脑如果想截屏,我们可以采用了以下几个方法。一个方法就是用笔记本电脑截屏的快捷键来进行截屏。我们在浏览网页的时候,如果想把网页截屏下来,可以用笔记本电脑的Prtsc键。这个键就是截屏的...

软件升级后怎么恢复以前的版本

不能恢复了,出现新版本后低版本验证就会关闭。1、软件升级软件升级,是指软件开发者在编写软件的时候,由于设计人员考虑不全面或程序功能不完善,在软件发行后,通过对程序的修改或加入新的功能后,以补丁的形式发...

好看的鼠标指针图片(漂亮鼠标指针下载)

鼠标指针是计算机用户界面中常见的元素之一,其基本形状主要有以下几种:1.默认指针:通常是一个箭头的形状,这是最常见的鼠标指针。当系统处于就绪、等待状态,或者用户没有进行任何操作时,鼠标指针会显示为这...

128键盘键位图高清图(128键机械键盘键位图)

“Fn”键通常是功能键的简称。在惠普128fn键盘上,按下“Fn”键可以启用键盘上的其他功能按键。这些功能按键通常印有其他标志,如调节亮度、音量、飞行模式、触控板开关等。惠普128fn使用说明。首先需...

给电脑设置开机密码(电脑开关机密码设置方法)

方法如下1.建立开机密码。进入BIOS系统界面,点击键盘的Del按键,点击选项中的设置用户密码。设置完毕进入高级设置,点击密码选项列表的系统密码,点击保存并推出即可;2.设置系统密码。进入系统界...

用u盘怎么安装系统到电脑上(从u盘怎么安装系统)

首先将要安装的电脑系统下载到u盘里面。然后将u盘插入电脑,确保电脑识别成功。最后打开u盘,双击里面的系统安装包,点击安装即可。以下是重装电脑系统的一般步骤:在正常可用的电脑上下载并安装一个制作启动U盘...

百度输入法下载免费下载(百度输入法安卓版免费下载)

不同的车载导航系统的添加方法:1、车载导航为安卓系统:在电脑中下载第三方安卓输入法安装包,用u盘拷贝安装包,传入车载导航中,在导航中选择安装即可。2、车载导航为ce系统:此系统不支持额外安装输入法,只...

hp电脑如何进入bios(hp电脑如何进入u盘启动界面)

请看下文在重装电脑或是需要进行硬件设置的时候,就需要进入BIOS进行设置,那么怎么样进入电脑的BIOS呢?下面就以HP电脑来说明进入BIOS的方法吧。1.按电源键启动电脑在屏幕刚亮时不停按下F10...

flash下载电脑版下载(flash软件电脑版下载)
flash下载电脑版下载(flash软件电脑版下载)

AdobeFlashPlayer,是一种广泛使用专有的多媒体程序播放器,今天来分享一下电脑如何安装flashplayer,希望对大家有所帮助;1、首先打开电脑桌面【浏览器】,搜索【AdobeFlashPlayer】,2、点击第一个网址进入【...

2025-11-07 19:05 liuian

无线网设置步骤(无线网设置步骤怎么设置)

任意的打开一个浏览器,最好是自己比较常用的浏览器。我们在地址栏上面输入指定的路由器网站的内容。02输入网站便会弹出这样的对话框。03在账号中输入admin,密码同样如此。04回车后,即可进入到无线路由...

u盘里面装系统 可以直接用吗

可以。因为下载到U盘里的系统是可启动的,可以直接插入需要安装系统的电脑中启动安装程序,进行系统的安装。但是需要注意的是,不同类型的系统(如Windows和MacOS)需要不同的方法进行安装,而且在安...

一个win10密钥能激活几台电脑

零售版的密钥只能激活一台电脑,VOL版的能够批量激活。切实而今根基上用东西的人比较多,那样比较便当,提议也能够碰运气。软件可以正确辨认用户计较机上布置的悉数office版本和windows版本,包括w...

电脑城买电脑(电脑城买电脑装了盗版系统)

不太靠谱。首先电脑城的电脑同个款式配置很凌乱,要么来个阉割版、要么来个升级版,而所谓升级往往会以次充好,为的就是让你觉得少花了钱还买到了更好的配置。其次电脑城的销售人员大部分都是那种半懂的非专业人员,...

win11很多游戏不兼容(win11不兼容的游戏)

据我们了解,Windows11系统和传奇游戏之间没有直接的冲突或不兼容问题。然而,可能有一些间接的原因导致此问题。首先,传奇游戏是一款老游戏,可能需要在Windows11系统上运行一些兼容性设置或...

华为路由器登录(华为路由器登录入口手机版)

华为路由器的登录地址是192.168.3.1,电脑/手机连接到华为路由器的网络后,在浏览器中输入192.168.3.1,就能进入登录入口。然后输入登录密码,可以进入华为路由器的设置页面。华为wifi设...