百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

如何用Python的pandas库修改列的数据类型

liuian 2025-03-11 18:03 17 浏览

题目

DataFrame students
+-------------+--------+
| Column Name | Type   |
+-------------+--------+
| student_id  | int    |
| name        | object |
| age         | int    |
| grade       | float  |
+-------------+--------+

编写一个解决方案来纠正以下错误:

grade 列被存储为浮点数,将它转换为整数。

返回结果格式如下示例所示。

示例 1:

输入:
DataFrame students:
+------------+------+-----+-------+
| student_id | name | age | grade |
+------------+------+-----+-------+
| 1          | Ava  | 6   | 73.0  |
| 2          | Kate | 15  | 87.0  |
+------------+------+-----+-------+
输出:
+------------+------+-----+-------+
| student_id | name | age | grade |
+------------+------+-----+-------+
| 1          | Ava  | 6   | 73    |
| 2          | Kate | 15  | 87    |
+------------+------+-----+-------+
解释:
grade 列的数据类型已转换为整数。

解题方案

1、审题,理解题意

题目的意思是有一个名为 students 的 DataFrame,它包含学生数据。但是,分数存储为浮点数,而不是整数。要求是将分数类型从浮点型更改为整型。更改数据类型可以用pandas库中的astype 函数

2、解题思路

astype 函数: astype 函数用于将pandas 对象强制转换为指定的数据类型(数据类型)。astype 可用于将熊猫对象强制转换为任何 dtype。astype 函数不会就地修改原始的 DataFrame。相反,它返回具有指定数据类型更改的新 DataFrame。如果您希望反映原始 DataFrame 中的更改,则需要将结果重新赋值给它或相应地使用 copy 参数。

该函数的语法为:

DataFrame.astype(dtype, copy=True, errors='raise')
  • dtype: 它是一种数据类型,或列名->数据类型的字典。
  • copy: 默认情况下,astype 总是返回新分配的对象。如果 copy 设置为 False,则只有在旧对象无法强制转换为所需类型的情况下才会创建新对象。
  • errors: 控制对提供的数据类型的无效数据引发异常。默认设置为raise,表示会引发异常。
  • 因此,在我们的例子中,我们希望将 grade 列从浮点数转换为整数,我们可以使用下面的代码行来完成此操作:
  • students = students.astype({'grade': int}) #此行将 grade 列从浮点型转换为整型。

代码实现步骤为:

  • 定义 changeDatatype 的函数,该函数接受 DataFrame students 作为参数并返回 DataFrame。
def changeDatatype(students: pd.DataFrame) -> pd.DataFrame:
  • 改变列的数据类型:
  • students = students.astype({'grade': int}) #这行代码是解决方案的核心。使用 astype 函数将 grade 列的数据类型更改为整型。{'grade': int} 是一个字典,其中键是列名,值是所需的数据类型。
  • 返回语句:
return students       #此行返回修改后的 DataFrame。

3、代码实现

import pandas as pd

def changeDatatype(students: pd.DataFrame) -> pd.DataFrame:
    students = students.astype({'grade': int})
    return students

4、执行结果



相关推荐

eino v0.4.5版本深度解析:接口类型处理优化与错误机制全面升级

近日,eino框架发布了v0.4.5版本,该版本在错误处理、类型安全、流处理机制以及代理配置注释等方面进行了多项优化与修复。本次更新共包含6个提交,涉及10个文件的修改,由2位贡献者共同完成。本文将详...

SpringBoot异常处理_springboot异常注解

在SpringBoot中,异常处理是构建健壮、可维护Web应用的关键部分。良好的异常处理机制可以统一返回格式、提升用户体验、便于调试和监控。以下是SpringBoot中处理异常的完整指...

Jenkins运维之路(Jenkins流水线改造Day02-1-容器项目)

这回对线上容器服务器的流水线进行了一定的改造来满足目前线上的需求,还是会将所有的自动化脚本都放置到代码库中统一管理,我感觉一章不一定写的完,所以先给标题加了个-1,话不多说开干1.本次流水线的流程设计...

告别宕机!零基础搭建服务器监控告警系统!小白也能学会!

前言本文将带你从零开始,一步步搭建一个完整的服务器指标监控与邮件告警系统,使用的技术栈均为业界主流、稳定可靠的开源工具:Prometheus:云原生时代的监控王者,擅长指标采集与告警规则定义Node_...

httprunner实战接口测试笔记,拿走不谢

每天进步一点点,关注我们哦,每天分享测试技术文章本文章出自【码同学软件测试】码同学公众号:自动化软件测试码同学抖音号:小码哥聊软件测试01开始安装跟创建项目pipinstallhttprunne...

基于JMeter的性能压测平台实现_jmeter压测方案

这篇文章已经是两年前写的,短短两年时间,JMeter开源应用技术的发展已经是翻天覆地,最初由github开源项目zyanycall/stressTestPlatform形成的这款测试工具也开始慢...

12K+ Star!新一代的开源持续测试工具!

大家好,我是Java陈序员。在企业软件研发的持续交付流程中,测试环节往往是影响效率的关键瓶颈,用例管理混乱、接口调试复杂、团队协作不畅、与DevOps流程脱节等问题都能影响软件交付。今天,给大家...

Spring Boot3 中分库分表之后如何合并查询

在当今互联网应用飞速发展的时代,数据量呈爆发式增长。对于互联网软件开发人员而言,如何高效管理和查询海量数据成为了一项关键挑战。分库分表技术应运而生,它能有效缓解单库单表数据量过大带来的性能瓶颈。而在...

离线在docker镜像方式部署ragflow0.17.2

经常项目上会出现不能连外网的情况,要怎么使用ragflow镜像部署呢,这里提供详细的步骤。1、下载基础镜像根据docker-compose-base.yml及docker-compose.yml中的i...

看,教你手写一个最简单的SpringBoot Starter

何为Starter?想必大家都使用过SpringBoot,在SpringBoot项目中,使用最多的无非就是各种各样的Starter了。那何为Starter呢?你可以理解为一个可拔插式...

《群星stellaris》军事基地跳出怎么办?解决方法一览

《群星stellaris》军事基地跳出情况有些小伙伴出现过这种情况,究竟该怎么解决呢?玩家“gmjdadk”分享的自己的解决方法,看看能不能解决。我用英文原版、德语、法语和俄语四个版本对比了一下,结果...

数据开发工具dbt手拉手教程-03.定义数据源模型

本章节介绍在dbt项目中,如何定义数据源模型。定义并引入数据源通过Extract和Load方式加载到仓库中的数据,可以使用dbt中的sources组件进行定义和描述。通过在dbt中将这些数据集(表)声...

docker compose 常用命令手册_docker-compose init

以下是DockerCompose常用命令手册,按生命周期管理、服务运维、构建配置、扩缩容、调试工具分类,附带参数解析、示例和关键说明,覆盖多容器编排核心场景:一、生命周期管理(核心命令...

RagFlow与DeepSeek R1本地知识库搭建详细步骤及代码实现

一、环境准备硬件要求独立显卡(建议NVIDIAGPU,8GB显存以上)内存16GB以上,推荐32GB(处理大规模文档时更高效)SSD硬盘(加速文档解析与检索)软件安装bash#必装组件Docker...

Docker Compose 配置更新指南_docker-compose配置

高效管理容器配置变更的最佳实践方法重启范围保留数据卷适用场景docker-composeup-d变更的服务常规配置更新--force-recreate指定/所有服务强制重建down→up流程...