百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas:让你像写SQL一样做数据分析

liuian 2025-03-11 18:03 29 浏览

1. 引言

Pandas是一个开源的Python数据分析库。Pandas把结构化数据分为了三类:

  • Series,1维序列,可视作为没有column名的、只有一个column的DataFrame;
  • DataFrame,同Spark SQL中的DataFrame一样,其概念来自于R语言,为多column并schema化的2维结构化数据,可视作为Series的容器(container);
  • Panel,为3维的结构化数据,可视作为DataFrame的容器;

DataFrame较为常见,因此本文主要讨论内容将为DataFrame。DataFrame的生成可通过读取纯文本、Json等数据来生成,亦可以通过Python对象来生成:

import pandas as pd
import numpy as np


df = pd.DataFrame({'total_bill': [16.99, 10.34, 23.68, 23.68, 24.59],
 'tip': [1.01, 1.66, 3.50, 3.31, 3.61],
 'sex': ['Female', 'Male', 'Male', 'Male', 'Female']})

对于DataFrame,我们可以看到其固有的一些属性:

# data type of columns
print df.dtypes
# indexes
print df.index
# return pandas.Index
print df.columns
# each row, return array[array]
print df.values
  • index,为行索引
  • columns,为列名称(label)
  • dtype,为列数据类型

2. SQL操作

官方Doc给出了部分SQL的Pandas实现。在此基础上,本文给出了一些扩充说明。以下内容基于Python 2.7 + Pandas 0.18.1的版本。

select

SQL中的select是根据列的名称来选取;Pandas则更为灵活,不但可根据名称选取,还可以根据列所在的position选取。相关函数如下:

  • loc,基于列label,可选取特定行(根据行index);
  • iloc,基于行/列的position;
print df.loc[1:3, ['total_bill', 'tip']]
print df.loc[1:3, 'tip': 'total_bill']
print df.iloc[1:3, [1, 2]]
print df.iloc[1:3, 1: 3]
  • at,根据指定行index及列label,快速定位DataFrame的元素;
  • iat,与at类似,不同的是根据position来定位的;
print df.at[3, 'tip']
print df.iat[3, 1]
  • ix,loc与iloc的混合体,既支持label也支持position;
print df.ix[1:3, [1, 2]]
print df.ix[1:3, ['total_bill', 'tip']]

为了做行/列的选取,有更为简洁的表示:

print df[1: 3]
print df[['total_bill', 'tip']]
# print df[1:2, ['total_bill', 'tip']]  # TypeError: unhashable type

where

Pandas实现where filter,较为常用的办法为df[df[colunm] boolean expr],比如:

print df[df['sex'] == 'Female']
print df[df['total_bill'] > 20]

# or
print df.query('total_bill > 20')

在where子句中常常会搭配and, or, in, not关键词,Pandas中也有对应的实现:

# and
print df[(df['sex'] == 'Female') & (df['total_bill'] > 20)]
# or
print df[(df['sex'] == 'Female') | (df['total_bill'] > 20)]
# in
print df[df['total_bill'].isin([21.01, 23.68, 24.59])]
# not
print df[-(df['sex'] == 'Male')]
print df[-df['total_bill'].isin([21.01, 23.68, 24.59])]

distinct

drop_duplicates根据某列对dataframe进行去重:

df.drop_duplicates(subset=['sex'], keep='first', inplace=True)

包含参数:

  • subset,为选定的列做distinct,默认为所有列;
  • keep,值选项{'first', 'last', False},保留重复元素中的第一个、最后一个,或全部删除;
  • inplace ,默认为False,返回一个新的dataframe;若为True,则返回去重后的原dataframe

group

group一般会配合合计函数(Aggregate functions)使用,比如:count、avg等。Pandas对合计函数的支持有限,有count和size函数实现SQL的count:

print df.groupby('sex').size
print df.groupby('sex').count
print df.groupby('sex')['tip'].count

对于多合计函数,

select sex, max(tip), sum(total_bill) as total
from tip_tb
group by sex;

实现在agg函数中指定dict:

print df.groupby('sex').agg({'tip': np.max, 'total_bill': np.sum})

# distinct count
print df.groupby('tip').agg({'sex': pd.Series.nunique})

as

SQL中使用as修改列的别名,Pandas也支持这种修改:

# first implementation
df.columns = ['total', 'pit', 'xes']
# second implementation
df.rename(columns={'total_bill': 'total', 'tip': 'pit', 'sex': 'xes'}, inplace=True)

我们容易发现,第一种方法的修改是有问题的,因为其是按照列position逐一替换的。因此,我们推荐第二种方法。

join

Pandas中join的实现也有两种:

# 1.
df.join(df2, how='left'...)

# 2. 
pd.merge(df1, df2, how='left', left_on='app', right_on='app')

第一种方法是按DataFrame的index进行join的,而第二种方法才是按on指定的列做join。Pandas满足left、right、inner、full outer四种join方式。

order

Pandas中支持多列order,并可以调整不同列的升序/降序,而不需统一指定desc/asc:

print df.sort_values(['total_bill', 'tip'], ascending=[False, True])

top

对于全局的top:

print df.nlargest(3, columns=['total_bill'])

对于分组top,MySQL的实现(采用自join的方式):

select a.sex, a.tip
from tips_tb a
where (
    select count(*)
    from tips_tb b
    where b.sex = a.sex and b.tip > a.tip
) < 2
order by a.sex, a.tip desc;

Pandas的等价实现,思路与上类似:

# 1.
df.assign(rn=df.sort_values(['total_bill'], ascending=False)
 .groupby('sex')
 .cumcount+1)\
    .query('rn < 3')\
    .sort_values(['sex', 'rn'])
    
# 2.
df.assign(rn=df.groupby('sex')['total_bill']
 .rank(method='first', ascending=False)) \
    .query('rn < 3') \
    .sort_values(['sex', 'rn'])

自定义

除了上述SQL操作外,Pandas提供对每列/每一元素做自定义操作,为此而设计以下三个函数:

  • map(func),为Series的函数,DataFrame不能直接调用,需取列后再调用;
  • apply(func),对DataFrame中的某一行/列进行func操作;
  • applymap(func),为element-wise函数,对每一个元素做func操作
print df['tip'].map(lambda x: x - 1)
print df[['total_bill', 'tip']].apply(sum)
print df.applymap(lambda x: x.upper if type(x) is str else x)

3. 实战

环比增长

现有两个月APP的UV数据,要得到月UV增长量;等价于两个Dataframe left join后按指定列做减操作:

def chain(current, last):
    df1 = pd.read_csv(current, names=['app', 'tag', 'uv'], sep='\t')
    df2 = pd.read_csv(last, names=['app', 'tag', 'uv'], sep='\t')
    df3 = pd.merge(df1, df2, how='left', on='app')
    df3['uv_y'] = df3['uv_y'].map(lambda x: 0.0 if pd.isnull(x) else x)
    df3['growth'] = df3['uv_x'] - df3['uv_y']
    return df3[['app', 'growth', 'uv_x', 'uv_y']].sort_values(by='growth', ascending=False)

差集

对于给定的列,一个Dataframe过滤另一个Dataframe该列的值;相当于集合的差集操作:

def difference(left, right, on):
    """
    difference of two dataframes
    :param left: left dataframe
    :param right: right dataframe
    :param on: join key
    :return: difference dataframe
    """
    df = pd.merge(left, right, how='left', on=on)
    left_columns = left.columns
    col_y = df.columns[left_columns.size]
    df = df[df[col_y].isnull]
    df = df.ix[:, 0:left_columns.size]
    df.columns = left_columns
    return df

相关推荐

搭建一个20人的办公网络(适用于20多人的小型办公网络环境)

楼主有5台机上网,则需要一个8口路由器,组网方法如下:设备:1、8口路由器一台,其中8口为LAN(局域网)端口,一个WAN(广域网)端口,价格100--400元2、网线N米,这个你自己会看了:)...

笔记本电脑各种参数介绍(笔记本电脑各项参数新手普及知识)

1、CPU:这个主要取决于频率和二级缓存,频率越高、二级缓存越大,速度越快,现在的CPU有三级缓存、四级缓存等,都影响相应速度。2、内存:内存的存取速度取决于接口、颗粒数量多少与储存大小,一般来说,内...

汉字上面带拼音输入法下载(字上面带拼音的输入法是哪个)

使用手机上的拼音输入法打成汉字的方法如下:1.打开手机上的拼音输入法,在输入框中输入汉字的拼音,例如“nihao”。2.根据输入法提示的候选词,选择正确的汉字。例如,如果输入“nihao”,输...

xpsp3安装版系统下载(windowsxpsp3安装教程)

xpsp3纯净版在采用微软封装部署技术的基础上,结合作者的实际工作经验,融合了许多实用的功能。它通过一键分区、一键装系统、自动装驱动、一键设定分辨率,一键填IP,一键Ghost备份(恢复)等一系列...

没有备份的手机数据怎么恢复

手机没有备份恢复数据方法如下1、使用数据线将手机与电脑连接好,在“我的电脑”中可以看到手机的盘符。  2、将手机开启USB调试模式。在手机设置中找到开发者选项,然后点击“开启USB调试模式”。  3、...

电脑怎么激活windows11专业版

win11专业版激活方法有多种,以下提供两种常用的激活方式:方法一:使用激活密钥激活。在win11桌面上右键点击“此电脑”,选择“属性”选项。进入属性页面后,点击“更改产品密钥或升级windows”。...

华为手机助手下载官网(华为手机助手app下载专区)

华为手机助手策略调整,已不支持从应用市场下载手机助手,目前华为手机助手是需要在电脑上下载或更新手机助手到最新版本,https://consumer.huawei.com/cn/support/his...

光纤线断了怎么接(宽带光纤线断了怎么接)

宽带光纤线断了可以重接,具体操作方法如下:1、光纤连接的时候要根据束管内,同色相连,同芯相连,按顺序进行连接,由大到小。一般有三种连接方法,分别是熔接、活动连接和机械连接。2、连接的时候要开剥光缆,抛...

深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
  • 深度操作系统安装教程(深度操作系统安装教程图解)
win7旗舰版和专业版区别(win7旗舰版跟专业版)

1、功能区别:Win7旗舰版比专业版多了三个功能,分别是Bitlocker、BitlockerToGo和多语言界面; 2、用途区别:旗舰版的功能是所有版本中最全最强大的,占用的系统资源,...

万能连接钥匙(万能wifi连接钥匙下载)

1、首先打开wifi万能钥匙软件,若手机没有开启WLAN,就根据软件提示打开WLAN开关;2、打开WLAN开关后,会显示附近的WiFi,如果知道密码,可点击相应WiFi后点击‘输入密码’连接;3、若不...

雨林木风音乐叫什么(雨林木风是啥)

雨林木风的创始人是陈年鑫先生。陈年鑫先生于1999年创立了雨林木风公司,其初衷是为满足中国市场对高品质、高性能电脑的需求。在陈年鑫先生的领导下,雨林木风以技术创新、产品质量和客户服务为核心价值,不断推...

aics6序列号永久序列号(aics6破解序列号)

关于AICS6这个版本,虽然是比较久远的版本,但是在功能上也是十分全面和强大的,作为一名平面设计师的话,AICS6的现有的功能已经能够应付几乎所有的设计工作了……到底AICC2019的功能是不是...

win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
  • win7正在启动windows 卡住(win7正在启动windows卡住了 进入安全模式)
手机可以装电脑系统吗(手机可以装电脑系统吗怎么装)

答题公式1:手机可以通过数据线或无线连接的方式给电脑装系统。手机安装系统需要一定的技巧和软件支持,一般需要通过数据线或无线连接的方式与电脑连接,并下载相应的软件和系统文件进行安装。对于大部分手机用户来...