百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas基本数据结构之DataFrame简介

liuian 2025-03-11 18:02 10 浏览

DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一,掌握了 DataFrame 的用法,就基本拥有了数据分析的基本能力。DataFrame 是由多种类型的列构成的二维标签数据结构,类似于 Excel 、SQL 表,或 Series 对象构成的字典。DataFrame也称之为异构数据表,所谓异构指的是不同列的数据类型是可以不同的,可以是字符串、整型或者浮点型等,就好比sql表中每列的数据类型可以不相同一个道理。DataFrame的简单结构如下图所示,其中红色的列表示index,蓝色的行表示columns。

DataFrame创建

Pandas中DataFrame的创建非常简单,语法格式如下:

pd.DataFrame( data, index, columns, dtype, copy)

参数

说明

data

输入的数据,可以是 ndarray,series,list,dict,标量以及一个 DataFrame。

index

行标签,如果没有传递 index 值,则默认行标签是 np.arange(n),n 代表 data 的元素个数。

columns

列标签,如果没有传递 columns 值,则默认列标签是 np.arange(n)。

dtype

dtype表示每一列的数据类型。

copy

默认为 False,表示是否复制数据 data。

Pandas提供了多种创建DataFrame的方式,主要包含以下几种最基本的方式:

创建空DataFrame

可以使用下列方式直接创建一个空的DataFrame。

#创建一个空的DataFrame
df = pd.DataFrame()
print(df)

结果如下:

Empty DataFrame
Columns: []
Index: []

使用多维列表DataFrame

使用一维列表创建:

#使用1维度列表
data = [1,2,3,4,5]
df = pd.DataFrame(data)
print(df)

结果如下:

   0
0  1
1  2
2  3
3  4
4  5

使用二维列表创建:

#使用2维度列表
data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
print(df)

结果如下:

   id level  rate
0   1     A  3.45
1   2     A  1.68
2   3     E  2.14
3   4     C  3.13
4   5     B  4.33

这里需要注意一点,在使用列表创建时,列表的长度表示行元素的个数,在不指定index和columns的情况下,会默认使用隐式index和columns。

使用Series创建DataFrame

使用Series创建DataFrame时,生成的索引是每个 Series 索引的并集。如果没有指定columns,DataFrame 的columns就是字典键的有序列表。

#使用Series创建DataFrame
data = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
     'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print(df)

结果如下:

   one  two
a  1.0  1.0
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0

从Series中指定特定的index

#使用Series创建DataFrame,指定index
data = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
     'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d, index = ['d', 'b', 'c'])
print(df)

结果如下:

   one  two
d  NaN  4.0
b  2.0  2.0
c  3.0  3.0

从Series中指定特定的index和columns

#使用Series创建DataFrame,指定index和columns
data = {'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
     'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d, index = ['a', 'b', 'c'], columns=['one','two','three'])
print(df)

结果如下:

   one  two three
a  1.0  1.0   NaN
b  2.0  2.0   NaN
c  3.0  3.0   NaN

这里需要注意的时,在指定index和colunms时,如果在源数据中没有的,会默认使用NaN来填充。

使用字典列表创建DataFrame

一组字典的列表也可以作为输入数据传递给 DataFrame 构造函数。默认情况下,字典的key会被用作columns。

#使用字典列表创建DataFrame
data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
print(df)

结果如下:

   a   b     c
0  1   2   NaN
1  5  10  20.0

如果在没有指定index的情况下, DataFrame会默认使用隐式索引,因此也可以手动去指定index:

#使用字典列表创建DataFrame,指定index
data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
print(df)

结果如下:

        a   b     c
first   1   2   NaN
second  5  10  20.0

使用字典列表创建DataFrame时,还可以通过指定columns来从字典中挑选出指定的key并按找columns中的顺序来创建DataFrame,如果指定的column在key中不存在,则用NaN来补充数据

#使用字典列表创建DataFrame,指定index和columns
data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'], columns=['b','a','d'])
print(df)

结果如下:

         b  a   d
first    2  1 NaN
second  10  5 NaN

DataFrame基本属性

名称

基本属性

T

行和列转置

axes

返回一个仅以行索引和列索引的列表。

dtypes

返回每列数据的数据类型

empty

DataFrame中没有数据或者任意坐标轴的长度为0,则返回True

ndim

轴的数量,也指numpy 数组的维数

shape

返回一个元组,表示了 DataFrame 维度

size

DataFrame中的元素数量

values

使用 numpy 数组表示 DataFrame 中的元素值

为了对上述基本属性进行演示,这里我们先创建一个DataFrame:

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
print(df)

结果如下:

   id level  rate
0   1     A  3.45
1   2     A  1.68
2   3     E  2.14
3   4     C  3.13
4   5     B  4.33

T

print(df.T)

结果如下:

          0     1     2     3     4
id        1     2     3     4     5
level     A     A     E     C     B
rate   3.45  1.68  2.14  3.13  4.33

axes

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
df.axes

结果如下:

[RangeIndex(start=0, stop=5, step=1),
 Index(['id', 'level', 'rate'], dtype='object')]

dtypes

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
df.dtypes

结果如下:

id         int64
level     object
rate     float64
dtype: object

empty

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
df.empty

结果如下:

False

如果此时我们重新创建一个空的DataFrame

df = pd.DataFrame()
df.empty

结果如下:

True

ndim

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
df.ndim

结果如下:

2

shape

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
df.shape

结果如下:

(5, 3)

size

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
df.size

结果如下:

15

values

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
df.values

结果如下:

array([[1, 'A', 3.45],
       [2, 'A', 1.68],
       [3, 'E', 2.14],
       [4, 'C', 3.13],
       [5, 'B', 4.33]], dtype=object)

DataFrame操作

DataFrame 可以分别使用列索引(columns)和行索引(index)来完成数据的选取、添加和删除操作。下面依次对这两种类型的操作进行简单介绍。

列索引操作DataFrame

DataFrame 可以使用列索(columns index)引来完成数据的选取、添加和删除操作。

1.列索引选取列数据

data = [[1,'A',3.45],[2,'A',1.68],[3,'E',2.14],[4,'C',3.13],[5,'B',4.33]]
df = pd.DataFrame(data, columns = ['id','level','rate'])
print(df['rate'])

结果如下:

0    3.45
1    1.68
2    2.14
3    3.13
4    4.33
Name: rate, dtype: float64

2.列索引添加列数据

可以利用其他列的数据来生成新的列数据据

df['flag'] = df['rate'] > 2
print(df)

结果如下:

   id level  rate   flag
0   1     A  3.45   True
1   2     A  1.68  False
2   3     E  2.14   True
3   4     C  3.13   True
4   5     B  4.33   True

也可以直接添加新数据列

df['del'] = [1,1,2,2,3]
print(df)

结果如下:

   id level  rate   flag  del
0   1     A  3.45   True    1
1   2     A  1.68  False    1
2   3     E  2.14   True    2
3   4     C  3.13   True    2
4   5     B  4.33   True    3

3.列索引删除列数据

删除列数据的方式有多种,首先可以使用del进行删除:

del df['del']
print(df)

结果如下:

   id level  rate   flag
0   1     A  3.45   True
1   2     A  1.68  False
2   3     E  2.14   True
3   4     C  3.13   True
4   5     B  4.33   True

另外还可以通过pop进行列数据的删除:

df.pop('flag')

结果如下:

0     True
1    False
2     True
3     True
4     True
Name: flag, dtype: bool

这个时候原DataFrame变成了

   id level  rate
0   1     A  3.45
1   2     A  1.68
2   3     E  2.14
3   4     C  3.13
4   5     B  4.33

行索引操作DataFrame

行索引操作和列索引操作类似,也分别包括行索引取数,添加行,删除行等

1.index索引取数

index索引取数时通过将行索引传递给函数loc来实现的

#使用字典列表创建DataFrame,指定index
data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
df.loc['first']

结果如下:

a    1.0
b    2.0
c    NaN
Name: first, dtype: float64

2.隐式索引取数

隐式索引为0~range(n)的整数,可以通过方法iloc来对指定行进行取数

data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
df.iloc[0]

结果如下:

a    1.0
b    2.0
c    NaN
Name: first, dtype: float64

3.多行索引取数

DataFrame还支持以切片的方式进行多行取数,需要注意的是,中括号内如果不是切片,那么则是按列索引进行取数,这是需要注意的一点

data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
print(df[0:2])

结果如下:

        a   b     c
first   1   2   NaN
second  5  10  20.0

另外还可以使用head()方法进行头部n行取数,如果不指定参数,默认取5行。

data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
print(df.head(1))

结果如下:

       a  b   c
first  1  2 NaN

另外还可以使用tail()方法进行尾部n行取数,如果不指定参数,默认取5行。

data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
print(df.tail(1))

结果如下:

        a   b     c
second  5  10  20.0

4.多行索引取数

DataFrame还支持以切片的方式进行多行取数,需要注意的是,中括号内如果不是切片,那么则是按列索引进行取数,这是需要注意的一点

data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
print(df[0:2])

结果如下:

        a   b     c
first   1   2   NaN
second  5  10  20.0

5.添加数据行

与添加列数据不同的是,添加行需要使用cancat()方法进行追加,也可以使用append()方法,但是append已被弃用。

data1 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df1 = pd.DataFrame(data, index=['first', 'second'])
data2 = [{'a': 7, 'b': 3,'c':6}, {'a': 5, 'c': 9}]
df2 = pd.DataFrame(data, index=['third', 'fourth'])
df = pd.concat([df1, df2])
print(df)

结果如下:

        a   b     c
first   1   2   NaN
second  5  10  20.0
third   1   2   NaN
fourth  5  10  20.0

6.行索引删除数据

行索引删除数据使用drop()方法,由于Pandas的行索引是可以允许重复的,因此当有多个index重复时,删除某个index中的行数据会将所有index为改值的行全部删除。

data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20},{'a': 7, 'b': 3,'c':6}, {'a': 5, 'c': 9}]
df = pd.DataFrame(data, index=['first', 'second','third', 'fourth'])
print(df.drop('first'))

结果如下:

        a     b     c
second  5  10.0  20.0
third   7   3.0   6.0
fourth  5   NaN   9.0

关于DataFrame就简单的介绍到这里,由于Pandas是个面向数据分析的工具,因此内部集成了很多数据分析使用到的方法,这些方法作用在Series和DataFrame上来实现特定的数据分析需求,后面如果有时间,会简单介绍几个在数据分析中常用的一些方法。

相关推荐

【常识】如何优化Windows 7

优化Windows7可以让这个经典系统运行更流畅,特别是在老旧硬件上。以下是经过整理的实用优化方案,分为基础优化和进阶优化两部分:一、基础优化(适合所有用户)1.关闭不必要的视觉效果右键计算机...

系统优化!Windows 11/10 必做的十个优化配置

以下是为Windows10/11用户整理的10个必做优化配置,涵盖性能提升、隐私保护和系统精简等方面,操作安全且无需第三方工具:1.禁用不必要的开机启动项操作路径:`Ctrl+S...

最好用音频剪辑的软件,使用方法?

QVE音频剪辑是一款简单实用的软件,功能丰富,可编辑全格式音频。支持音频转换、合并、淡入淡出、变速、音量调节等,无时长限制,用户可自由剪辑。剪辑后文件音质无损,支持多格式转换,便于存储与跨设备播放,满...

Vue2 开发总踩坑?这 8 个实战技巧让代码秒变丝滑

前端开发的小伙伴们,在和Vue2打交道的日子里,是不是总被各种奇奇怪怪的问题搞得头大?数据不响应、组件传值混乱、页面加载慢……别慌!今天带来8个超实用的Vue2实战技巧,每一个都能直击痛...

Motion for Vue:为Vue量身定制的强大动画库

在前端开发中,动画效果是提升用户体验的重要手段。Vue生态系统中虽然有许多动画库,但真正能做到高性能、易用且功能丰富的并不多。今天,我们要介绍的是MotionforVue(motion-v),...

CSS view():JavaScript 滚动动画的终结

前言CSSview()方法可能会标志着JavaScript在制作滚动动画方面的衰落。如何用5行CSS代码取代50多行繁琐的JavaScript,彻底改变网页动画每次和UI/U...

「大数据」 hive入门

前言最近会介入数据中台项目,所以会推出一系列的跟大数据相关的组件博客与文档。Hive这个大数据组件自从Hadoop诞生之日起,便作为Hadoop生态体系(HDFS、MR/YARN、HIVE、HBASE...

青铜时代的终结:对奖牌架构的反思

作者|AdamBellemare译者|王强策划|Tina要点运维和分析用例无法可靠地访问相关、完整和可信赖的数据。需要一种新的数据处理方法。虽然多跳架构已经存在了几十年,并且可以对...

解析IBM SQL-on-Hadoop的优化思路

对于BigSQL的优化,您需要注意以下六个方面:1.平衡的物理设计在进行集群的物理设计需要考虑数据节点的配置要一致,避免某个数据节点性能短板而影响整体性能。而对于管理节点,它虽然不保存业务数据,但作...

交易型数据湖 - Apache Iceberg、Apache Hudi和Delta Lake的比较

图片由作者提供简介构建数据湖最重要的决定之一是选择数据的存储格式,因为它可以大大影响系统的性能、可用性和兼容性。通过仔细考虑数据存储的格式,我们可以增强数据湖的功能和性能。有几种不同的选择,每一种都有...

深入解析全新 AWS S3 Tables:重塑数据湖仓架构

在AWSre:Invent2024大会中,AWS发布了AmazonS3Tables:一项专为可扩展存储和管理结构化数据而设计的解决方案,基于ApacheIceberg开放表格...

Apache DataFusion查询引擎简介

简介DataFusion是一个查询引擎,其本身不具备存储数据的能力。正因为不依赖底层存储的格式,使其成为了一个灵活可扩展的查询引擎。它原生支持了查询CSV,Parquet,Avro,Json等存储格式...

大数据Hadoop之——Flink Table API 和 SQL(单机Kafka)

一、TableAPI和FlinkSQL是什么TableAPI和SQL集成在同一套API中。这套API的核心概念是Table,用作查询的输入和输出,这套API都是批处理和...

比较前 3 名Schema管理工具

关注留言点赞,带你了解最流行的软件开发知识与最新科技行业趋势。在本文中,读者将了解三种顶级schema管理工具,如AWSGlue、ConfluentSchemaRegistry和Memph...

大数据技术之Flume

第1章概述1.1Flume定义Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。1.2Flume的优点1.可以和...