百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

计算机启动知识系列 - 一个UEFI例子

liuian 2025-03-03 19:21 7 浏览

在这一章我们将运行一个uefi的实例程序,这个程序可以调用uefi提供的服务在屏幕中打印 Hello world! 。uefi不像BIOS的编程通过使用汇编,在uefi中使用C语言编程,它极大提升了编程效率。下面就开始吧。

准备

为了防止破坏真实的计算机,这里还是使用qemu模拟器,我们还需要安装GCC环境,同时还需要安装用于开发UEFI应用程序所使用的软件包,为了让qemu运行在UEFI下,我们还需要编译一个UEFI固件。

Qemu一般运行在BIOS模式下,为了让它支持运行在UEFI,我们需要一个UEFI固件,tianocore提供一个符合UEFI规范的模拟环境OVMF

  • OVMF:它是一个应用比较广泛的开源UEFI固件,它实现了UEFI规范,所以在其上运行的efi程序可以直接运行在物理环境中,在开始前我们需要编译获得一个OVMF。OVMF在开源项目EDK2下,在网上提供的一些版本发现无法运行,所以还是自己编一个好。

编译OVMF

EDK2项目实现了UEFI规范,它可以运行在多种平台之上,在这里我们只编译运行在Qemu环境下的版本。

首先需要安装编译的依赖

$sudo apt-get install build-essential git uuid-dev iasl nasm python3-distutils

获取源代码

$ mkdir ~/tianocore$ cd ~/tianocore$ git clone git://github.com/tianocore/edk2.git$ cd edk2

编译工具,这些工具是后续编译所需要的

$ make -C BaseTools

edk2中提供了编译所需要的基本环境配置

$ . edksetup.sh

然后,设置编译所需要的参数,默认参数都保存在Conf/target.txt中,所以修改对应的参数就可以了

$ vi Conf/target.txt找到默认配置 ACTIVE_PLATFORM       = Nt32Pkg/Nt32Pkg.dsc修改为 ACTIVE_PLATFORM       = MdeModulePkg/MdeModulePkg.dsc找到默认配置 TOOL_CHAIN_TAG        = MYTOOLS修改为 TOOL_CHAIN_TAG        = GCC5找到默认配置 TARGET_ARCH           = IA32修改为 TARGET_ARCH           = X64找到默认配置 ACTIVE_PLATFORM       = MdeModulePkg/MdeModulePkg.dsc修改为,这个配置说明使用OVMF(Open Virtual Machine Firmware )来进行编译,这个是虚拟机环境所需要的 ACTIVE_PLATFORM       = OvmfPkg/OvmfPkgX64.dsc

需要注意的这个配置是运行在X86_64的配置信息,其他的平台需要做对应的修改。

到这里,我们就可以开始我们的编译工作了

$ build

大概过几分钟,编译过程就可以完成,编译的结果在
Build/OvmfX64/DEBUG_GCC5/FV/
中。文件 OVMF.fd 就是虚拟环境所需要的UEFI固件。它可以帮助我们直接在Qemu中运行efi程序。

我们可以运行以下命令测试是否可以进入UEFI交互式的命令行中

$ sudo qemu-system-x86_64 -bios OVMF.fd -nographic -net none

将出现以下界面

至此,我们就完成虚拟机环境下的UEFI固件的编译,也使用这个固件进入到它的环境中了。完成了准备工作,下面就进入主题,如何使用uefi提供的服务打印 Hello world!

Hello World

需要注意的是,EFI应用的开始点和规范的C语言就一点区别,规范的C语言的开始从 main 函数开始,而EFI应用则是从 efi_main 开始,让我们看看这个例子吧

#include #include EFI_STATUSEFIAPIefi_main (EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable) {   InitializeLib(ImageHandle, SystemTable);   Print(L"Hello, world!\n");   return EFI_SUCCESS;}

这个程序声明了 efi_main 函数,也是EFI程序的入口,并且调用了 Print 打印了 Hello world!。这段程序和C语言

#include int main (int argc, char **argv){  printf("Hello, world!\n");  return 0;}

一致。这两个程序的功能一致,都是为了打印 Hello world!

然后,我们将这段程序编译成efi程序,下面是编译所使用的的Makefile,编译过程和传统的C语言还是有很大的区别的

.POSIX:.PHONY: all clean runARCH = $(shell uname -m | sed s,i[3456789]86,ia32,)OBJS = main.oTARGET = HelloWorld.efiEFIINC = /usr/include/efiEFIINCS = -I$(EFIINC) -I$(EFIINC)/$(ARCH) -I$(EFIINC)/protocolLIB = /usr/libEFILIB = /usr/libEFI_CRT_OBJS = $(EFILIB)/crt0-efi-$(ARCH).oEFI_LDS = $(EFILIB)/elf_$(ARCH)_efi.ldsCFLAGS = $(EFIINCS) -fno-stack-protector -fpic -fshort-wchar -mno-red-zone -Wallifeq ($(ARCH),x86_64)    CFLAGS += -DEFI_FUNCTION_WRAPPERendifLDFLAGS = -nostdlib -znocombreloc -T $(EFI_LDS) -shared \  -Bsymbolic -L $(EFILIB) -L $(LIB) $(EFI_CRT_OBJS)all: $(TARGET)HelloWorld.so: $(OBJS)ld $(LDFLAGS) $(OBJS) -o $@ -lefi -lgnuefi%.efi: %.soobjcopy -j .text -j .sdata -j .data -j .dynamic \-j .dynsym  -j .rel -j .rela -j .reloc \--target=efi-app-$(ARCH) $^ $@run: allqemu-system-x86_64 -bios ovmf.fdclean:rm -f *.efi *.o *.so

这个按照EFI规范将这段程序编译成efi程序。我们执行 make 后,就会得到 hello.efi 的efi应用。

运行EFI应用

一种简单的方式

我们得到efi应用后,efi就可以在UEFI环境下运行了,简单点的我们可以在目录中直接运行

$ cp $tianocore/edk2/Build/OvmfX64/DEBUG_GCC5/FV/OVMF.fd .$ mkdir efibin$ cp hello.efi image$ qemu-system-x86_64 -nographic -bios OVMF.fd -drive file=fat:rw:efibin,media=disk,format=raw -net none

然后进入到shell中,输入 fs0: 后,执行 HelloWorld.efi

到此,我们就完整的运行一个可以在屏幕中打印 Hello world! 的efi程序。这种方式能够帮助我们快速建立我们的模拟环境,但无法了解一些细节,所以也提供了另外一种形式。

复杂的方式

这种方式我们将完整的模拟一个具有EFI分区的磁盘镜像来了解EFI程序的运行。我们之前也说过UEFI固件会根据配置查找每个存储介质中的EFI分区。EFI分区是GPT分区格式中的一个分区,这个分区具有FAT(FAT12,FAT16,FAT32)文件系统。但更加通用的是FAT32的文件系统。这个方式需要root权限。

为了建立一个EFI分区,我们首先创建一个磁盘镜像

$ dd if=/dev/zero of=/path/to/uefi.img bs=512 count=93750

使用dd命令创建了一个大小为48,000,000字节的空白盘(每个扇区512字节,总共93750个扇区,整个磁盘48MB),之所以使用这个大小是因为FAT32最小大小为33,548,800字节,加上GPT所需要的额外的空间。所以选择了这个大小,你也可以选择其他的大小。

下面我们将创建一个只有EFI系统分区的盘

$ gdisk /path/to/uefi.imgGPT fdisk (gdisk) version 0.8.10Partition table scan:  MBR: not present  BSD: not present  APM: not present  GPT: not presentCreating new GPT entries.Command (? for help): oThis option deletes all partitions and creates a new protective MBR.Proceed? (Y/N): yCommand (? for help): nPartition number (1-128, default 1): 1First sector (34-93716, default = 2048) or {+-}size{KMGTP}: 2048Last sector (2048-93716, default = 93716) or {+-}size{KMGTP}: 93716Current type is 'Linux filesystem'Hex code or GUID (L to show codes, Enter = 8300): ef00Changed type of partition to 'EFI System'Command (? for help): wFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTINGPARTITIONS!!Do you want to proceed? (Y/N): yOK; writing new GUID partition table (GPT) to uefi.img.Warning: The kernel is still using the old partition table.The new table will be used at the next reboot.The operation has completed successfully.

执行完上面的命令后,我们就有了一个GPT分区的EFI系统分区的磁盘镜像了,这个磁盘镜像使用521字节的扇区,EFI分区从1,048,576(2048 * 512)字节开始,大小为46,934,528 ((93716 - 2048 + 1) * 512)字节。 这个EFI系统分区还没有格式化,下面我们将这个EFI系统分区格式化成FAT32文件系统。

# losetup --offset 1048576 --sizelimit 46934528 /dev/loop0 /path/to/uefi.img

如果发现设备忙,可以使用其他的回环设备。

使用挂在的回环设备,格式化文件系统

# mkdosfs -F 32 /dev/loop0

将回环设备挂在到挂载点

# mount /dev/loop0 /mnt

将efi文件拷贝到efi分区中

$ cp /path/to/HelloWorld.efi /mnt/

然后,卸载挂载点,释放回环设备

$ umount /mnt$ losetup -d /dev/loop0

uefi.img 通过以上步骤我们生成了具有GPT分区表,包含一个EFI系统分区,这个系统分区中包含一个 HelloWorld.efi 文件。

下面就可以运行这个程序了

$ qemu-system-x86_64 -cpu qemu64 -bios OVMF.fd -drive file=uefi.img,if=ide -net none

这里之所以将net设置为none,是为了关闭PXE引导。

总结

通过这个文章,我们应该如何编译OVMF,使用这个固件建立Qemu的模拟环境,学会如何编写一个efi应用,并且如何建立一个具有EFI系统分区的磁盘镜像。

附录

如何使用非root创建UEFI磁盘镜像

$ dd if=/dev/zero of=uefi.img bs=512 count=93750$ parted uefi.img -s -a minimal mklabel gpt$ parted uefi.img -s -a minimal mkpart EFI FAT16 2048s 93716s$ parted uefi.img -s -a minimal toggle 1 boot$ dd if=/dev/zero of=/tmp/part.img bs=512 count=91669$ mformat -i /tmp/part.img -h 32 -t 32 -n 64 -c 1$ mcopy -i /tmp/part.img main.efi ::$ dd if=/tmp/part.img of=uefi.img bs=512 count=91669 seek=2048 conv=notrunc

相关推荐

面试问了解Linux内存管理吗?10张图给你安排的明明白白!

来源:https://www.cnblogs.com/NanoDragon/p/12736887.html今天来带大家研究一下Linux内存管理。对于精通CURD的业务同学,内存管理好像离我们很远...

Linux Kernel 6.12震撼发布:实时性能飙升,开启全新计算时代!

概述LinusTorvalds在邮件列表中宣布推出LinuxKernel6.12,该版本带来了多项重要的更新和功能增强。更新亮点PREEMPT_RT支持主要内容:LinuxKernel...

linux Grub2功能、常见配置及使用方式

Grub2(GrandUnifiedBootloaderversion2)是一款功能强大的引导加载程序,提供了以下功能和常见配置:多操作系统支持:Grub2可以加载和引导多个操作系统,包括不同...

Linux内核必备知识点-platform总线详解

platform总线是学习linux驱动必须要掌握的一个知识点。本文参考已发布:Linux3.14内核一、概念嵌入式系统中有很多的物理总线:I2c、SPI、USB、uart、PCIE、APB、AHB...

linux kernel内核的头文件获取、安装等方法

交叉编译时经常会用到这些头文件。下载合适版本的linux地址:https://mirrors.aliyun.com/linux-kernel/https://mirrors.edge.kernel.o...

600个常用 Linux 命令,收藏备用!

本文为Linux命令大全,从A到Z都有总结,建议大家收藏以便查用,或者查漏补缺!A命令描述access用于检查调用程序是否可以访问指定的文件,用于检查文件是否存在accton用于打开或关闭记帐进程或...

Linux 中 `/proc/cpuinfo`文件中最常见的标志

/proc/cpuinfo是一个虚拟文件系统,在Linux系统中提供有关CPU(中央处理器)的信息。通过读取该文件,您可以获取有关处理器的详细信息,如型号、频率、核心数、缓存大小等。本文将介绍...

600个Linux命令大全,从A到Z,2023年收藏大吉!

本文为Linux命令大全(有PDF),从A到Z都有总结,建议大家收藏以便查用,或者查漏补缺!A命令描述access用于检查调用程序是否可以访问指定的文件,用于检查文件是否存在accton用于打开或关闭...

Linux下如何查看硬件信息?

我们在Linux下进行开发时,有时也需要知道当前的硬件信息,比如:CPU几核?使用情况?内存大小及使用情况?USB设备是否被识别?等等类似此类问题。下面良许介绍一些常用的硬件查看命令。lshwls...

从PXE到GRUB到VHD文件启动

今天玩点花活儿,之前的文章再探从VHD文件中启动Windows及Grub双启动VHD文件+TinyCoreLinux中研了一下GRUB和VHD文件的关联应用,那么结合PXE又会是怎么样的呢?...

bootra1n教学:Windows用户用U盘Linux实现checkra1n越狱方法

checkra1n越狱工具在前几天推出Linux版本,相信对于Windows用户可能也看得很模糊,甚至要切割硬碟到安装Linux系统太过于繁杂,这篇要来教大家最简易最快速利用U盘Linux...

不了解NUMA,就看不懂Linux内核

哈喽,我是子牙,一个很卷的硬核男人深入研究计算机底层、Windows内核、Linux内核、Hotspot源码……聚焦做那些大家想学没地方学的课程。为了保证课程质量及教学效果,一年磨一剑,三年先后做了这...

Linus Torvalds接受微软Hyper-V升级 下一代Linux启动会更快

虽然Windows的粉丝和Linux的粉丝经常喜欢进行激烈的键盘大战,但操作系统的制造商们自己也了解彼此的优缺点。毫无疑问,微软也明白这一点,事实上,它甚至鼓励用户尝试Linux,尽管是使用...

deepin使用笔记——开机卡LOGO,无法正常关机的解决办法

第一次使用deepin操作系统,很容易遇到几种情况:1,开机卡LOGO,无法进入系统。2,开机可以进入系统,但是进入系统后桌面环境无法正常打开,一直卡着什么都不能用。3,开机后看似一切正常,但关机的时...

如何检查Linux系统硬件信息?从CPU到显卡,一网打尽!

你可能会问:“我为什么要关心硬件信息?”答案很简单:硬件是Linux系统的根基,了解它可以帮你解决很多实际问题。比如:性能调优:知道CPU核心数和内存大小,才能更好地调整程序运行参数。故障排查:系统卡...