百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

生产环境与互联网隔离,pip install 不好用了怎么办?

liuian 2025-03-02 18:03 17 浏览

出于安全考虑,通常生产环境与互联网隔离,因此无法使用pip install在线安装 DolphinDB Python API(以下简称 Python API)。本文介绍如何离线安装 Python API 环境,包括 conda 环境和 wheel 安装两种方式。用户可根据生产环境的使用需求、应用场景自行选择。

1 环境准备

首先准备构建环境,包括在线环境与离线环境,其中在线环境用于在线收集和构建资源,离线环境用于离线安装与验证。

构建环境需要与目标环境尽可能的一致,包括操作系统版本、CPU 架构、Python 版本等。其中在线环境用于下载并构建各种资源,离线环境用于构建与测试 Python API 的安装包。

1.1 Linux 环境准备

推荐使用类似 virtual box 的虚拟化工具来制作环境。假设我们需要在 KyLin v10,x86-64, Python 3.8 的目标环境中安装 Python API,那么需要准备以下环境:

  • 在线环境

操作系统:KyLin v10

CPU:Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz

主机平台:VirtualBox 6.1

网络:NetWork Bridge

  • 离线环境

操作系统:KyLin v10

CPU:Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz

主机平台:VirtualBox 6.1

网络:HostOnly

其中 HostOnly(仅主机模式)的网络模式可以保证该机器与互联网无法连接。

1.2 Windows 环境准备

Windows 环境可以准备两台机器(可以是 PC),一台用于在线获取资源,并禁用另一台机器的网络进行离线安装测试。有关 Windows 下安装和配置 Conda 环境,详见 Windows 安装。https://link.zhihu.com/?target=
https%3A//gitee.com/dolphindb/Tutorials_CN/blob/master/python_api_install_offline.md%234-windows-conda-%25E5%25AE%2589%25E8%25A3%2585

2 Linux conda 安装

2.1 安装 miniconda

推荐使用 miniconda,通常生产环境比较复杂,需要虚拟环境以保证隔离性。

Miniconda — conda documentation (https://link.zhihu.com/?target=https%3A//gitee.com/link%3Ftarget%3Dhttps%253A%252F%252Fdocs.conda.io%252Fen%252Flatest%252Fminiconda.html)

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh

安装并激活 base 虚拟环境。

source ~/.bashrc

使用 conda env list 验证安装已完成:

2.2 配置 miniconda

分别配置在线、离线环境的 conda:

  1. conda 环境配置
conda config    // 在 ~/目录下会出现文件 .condarc

2.编辑 ~/.condarc 文件

show_channel_urls: true envs_dirs:   - ~/envs pkgs_dirs:   - ~/pkgs

2.3 在线环境下载包

  1. 运行以下命令下载 package
conda create -n test38 numpy=1.22.3 pandas python=3.8.13 --download-only

要求 numpy 为1.18到1.22.3之间的版本, 推荐使用1.22.3版本。

2. 压缩并上传 package

压缩 .condarc pkgs_dirs 路径下的依赖包,并上传至离线环境的 pkgs 目录。

tar -zcvf pkgs.tar.gz pkgs/
 md5sum pkgs.tar.gz > pkgs.tar.gz.md5

2.4 离线安装 conda 环境

  1. 上传至离线环境后,需检查下完整性:
(base) root@peter-VirtualBox:~# md5sum -c pkgs.tar.gz.md5
pkgs.tar.gz: 成功

2. 校验完整性通过后,再解压:

tar -zxvf pkgs.tar.gz

3. 创建虚拟环境:

conda create -n offline38 numpy pandas python=3.8.13 --offline
conda activate offline38

2.5 安装 DolphinDB Python API

  1. 下载 whl 包

根据 CPU 架构、操作系统,从官方网站 pypi.org 下载对应的 Python API 安装包。

对应 x86_64, Python3.8 的包:

下载链接 (https://link.zhihu.com/?target=
https%3A//gitee.com/link%3Ftarget%3Dhttps%253A%252F%252Ffiles.pythonhosted.org%252Fpackages%252F2b%252F9d%252Fd26f21b5ef2589dfe788ff2d65c0b4f368cd66f22c01271cedefc5a047a1%252Fdolphindb-1.30.19.2-cp38-cp38-manylinux2010_x86_64.whl)

2. pip 离线安装

pip install dolphindb-1.30.19.2-cp38-cp38-manylinux2010_x86_64.whl

3. 验证安装是否成功

(offline38) root@peter-VirtualBox:~# python
Python 3.8.13 (default, Mar 28 2022, 11:38:47)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import dolphindb as ddb
>>> s = ddb.session()
>>> s

能正常生成 session 就说明已安装成功安装 Python API。

3 Linux wheel 安装

3.1 在线环境收集 wheel 包

使用 pip wheel 命令收集相关 whl 包:

pip install wheel && pip wheel dolphindb

执行完成后,默认会在当前目录保存相关 whl 包。

(py38) [root@node1 ~]# ls *.whl|sort
dolphindb-1.30.19.2-cp38-cp38-manylinux2010_x86_64.whl
future-0.18.2-py3-none-any.whl
numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
pandas-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
python_dateutil-2.8.2-py2.py3-none-any.whl
pytz-2022.2.1-py2.py3-none-any.whl
six-1.16.0-py2.py3-none-any.whl

3.2 离线环境安装 wheel 包

pip install *.whl
(py38) root@peter-VirtualBox:~/wpkgs# pip install *.whl
Processing ./dolphindb-1.30.19.2-cp38-cp38-manylinux2010_x86_64.whl
Processing ./future-0.18.2-py3-none-any.whl
Processing ./numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Processing ./pandas-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Processing ./python_dateutil-2.8.2-py2.py3-none-any.whl
Processing ./pytz-2022.2.1-py2.py3-none-any.whl
Processing ./six-1.16.0-py2.py3-none-any.whl
Installing collected packages: pytz, six, numpy, future, python-dateutil, pandas, dolphindb
Successfully installed dolphindb-1.30.19.2 future-0.18.2 numpy-1.22.3 pandas-1.5.0 python-dateutil-2.8.2 pytz-2022.2.1 six-1.16.0

3.3 安装后验证

分别验证一下 whl 包和 Python API。

  • pip list
(py38) root@peter-VirtualBox:~/wpkgs# pip list
Package         Version
--------------- ---------
certifi         2022.9.14
dolphindb       1.30.19.2
future          0.18.2
numpy           1.22.3
pandas          1.5.0
pip             22.1.2
python-dateutil 2.8.2
pytz            2022.2.1
setuptools      63.4.1
six             1.16.0
wheel           0.37.1
  • Python API
(offline38) root@peter-VirtualBox:~# python
Python 3.8.13 (default, Mar 28 2022, 11:38:47)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import dolphindb as ddb
>>> s = ddb.session()
>>> s

能正常生成 session 就说明安装成功。

4 Windows conda 安装

分别在离线环境、在线环境安装并配置好 miniconda 环境。并通过在线环境构建

  • dolphindb 依赖包
  • dolphindb wheel 包

并上传至离线环境,来完成安装。

注:miniconda 的安装和配置分别在在线环境和离线环境完成,且目录名称须一致。

4.1 安装 miniconda

选择对应 Python 版本的 minicoda,下载 Miniconda3 Windows 64-bit 并安装。安装完成后,将 conda 加入 Windows 命令搜索路径:

此电脑 → 属性 → 查找设置 → 输入: 编辑系统环境变量 → 环境变量 → 系统环境变量

新建中输入 condabin 目录的完整路径,如:

D:\ProgramData\Miniconda3\condabin

点击确定,新开 cmd 窗口验证

C:\Users\wfhuang>conda -V
conda 4.12.0

4.2 配置 miniconda

设置包路径,如 D:\pkgs

D:\pythonApi>conda config --add pkgs_dirs D:\pkgs

4.3 在线环境下载包

参考4.2,在在线环境中配置好包路径,并下载 DolphinDB 相关依赖包

conda create -n test38 numpy=1.22.3 future pandas python=3.8.13 --download-only

在设置的 pkgs_dirs 中,会有存放相关依赖包。压缩后,包大小约为450MB

4.4 离线安装 conda 环境

  1. 将pkgs压缩包上传至离线环境,比较包的所占字节数,验证包是否完整。
  2. 校验完整性通过后,再解压至 pkgs 目录、创建虚拟环境:
conda create -n offline38 numpy pandas future python=3.8.13 --offline
conda activate offline38

4.5 安装 Python API

  • 下载 whl 包

根据 CPU 架构、操作系统,从官方网站 DolphinDB 下载对应的 Python API 安装包。

对应 Windows, x86_64, Python3.8 的包:

https://files.pythonhosted.org/packages/62/ff/382aff0a2add9ce5c779c14d0d7fbfcec62ab0748b5778731a7fe524c2af/dolphindb-1.30.19.2-cp38-cp38-win_amd64.whl

  • pip 离线安装
pip install dolphindb-1.30.19.2-cp38-cp38-win_amd64.whl
  • 验证安装是否成功
import dolphindb as ddb
s = ddb.session()
s.connect("192.168.1.157", 8848, "admin", "123456")
s.run("print(\"Welcome to DolphinDB!\")")
s.close()

D:\pythonApi>python hello_ddb.py
Welcome to DolphinDB!

输出欢迎信息说明安装已经成功。

5 Windows wheel 安装

配置一个与目标环境相同的构建环境。例如目标环境是 x86-64, Windows server 2016, Python 3.8.10,那么可以准备一个 x86-64, Windows 10, Python 3.8.10 的 PC 环境。

5.1 在线环境收集 wheel 包

收集 Python API 的 wheel 包,并生成清单文件 requirements.txt。

  1. pip wheel

使用 wheel 在当前环境构建相关 whl 包,并解决相关依赖。

pip wheel dolphindb -i https://pypi.tuna.tsinghua.edu.cn/simple

使用 -i 可以指定镜像源加速构建,例如中国地区可以选择清华源。执行完成后,默认会在当前目录保存相关 whl 包。

2. pip install

安装 Python API,用于生成依赖清单文件 requirements.txt。

pip install dolphindb -i https://pypi.tuna.tsinghua.edu.cn/simple

3. pip freeze

使用 freeze 解析 Python API 的依赖,并输出至文件 requirements.txt。

pip freeze dolphindb > requirements.txt

上述步骤完成后,目录类似如下(不同版本会有差异)。

5.2 离线环境安装 wheel 包

将相关 whl 包、requirements.txt 上传至 Python 离线环境,并通过 pip install 安装,

使用 -r 选项从指定的清单文件 requirements.txt 中批量安装 wheel 包。

pip install -r requirements.txt

D:\pythonApi>pip install -r requirements.txt
Processing d:\pythonapi\dolphindb-1.30.19.2-cp38-cp38-win_amd64.whl
Processing d:\pythonapi\numpy-1.22.3-cp38-cp38-win_amd64.whl
Processing d:\pythonapi\pandas-1.5.1-cp38-cp38-win_amd64.whl
Processing d:\pythonapi\python_dateutil-2.8.2-py2.py3-none-any.whl
Processing d:\pythonapi\pytz-2022.6-py2.py3-none-any.whl
Processing d:\pythonapi\six-1.16.0-py2.py3-none-any.whl
Collecting future==0.18.2
  Using cached future-0.18.2-py3-none-any.whl
Installing collected packages: six, pytz, python-dateutil, numpy, pandas, future, dolphindb
Successfully installed dolphindb-1.30.19.2 future-0.18.2 numpy-1.22.3 pandas-1.5.1 python-dateutil-2.8.2 pytz-2022.6 six-1.16.0

5.3 安装后验证

分别验证下 whl 包和 Python API 。

  • pip list
C:\pythonApi>pip list
Package         Version
--------------- ---------
dolphindb       1.30.19.2
future          0.18.2
numpy           1.22.3
pandas          1.5.1
pip             21.1.1
python-dateutil 2.8.2
pytz            2022.6
setuptools      56.0.0
six             1.16.0
  • 验证安装是否成功
import dolphindb as ddb
s = ddb.session()
s.connect("192.168.1.157", 8848, "admin", "123456")
s.run("print(\"Welcome to DolphinDB!\")")
s.close()

D:\pythonApi>python hello_ddb.py
Welcome to DolphinDB!

输出欢迎信息说明安装已经成功。

6 总结

总体而言,wheel 包安装比较简单快捷,而 conda 安装相对复杂,但是可以构建一个隔离环境。

安装方式

优点

不足

conda

提供虚拟环境

整个安装包大概在500M左右,上传至生产环境比较耗时,且需要校验完整性

wheel

简单快捷,安装包小

无法提供虚拟环境,可能与现有的 Python 环境相冲突

7 附录

7.1 pip 常用命令

pip list // 列出当前安装的包
pip freeze packageA // 列出 packageA 的依赖信息
pip wheel packageA  // 构建 packageA 的依赖 wheel 包
pip search packageA // 在官方仓库 PyPI 搜索 packageA

7.2 conda 常用命令

  • 离线创建虚拟环境
conda create -n py38 python=3.8.13 --offline
  • 激活/关闭虚拟环境
conda env list //查看所有虚拟环境
conda activate py38 //激活 py38
conda deactivate //退出当前虚拟环境
  • 清理并删除 conda 环境:
conda deactivate
conda remove -n offline38 --all

7.3 常见问题处理

Q: conda 离线安装缺失包

PackagesNotFoundError: The following packages are not available from current channels:
  - pandas
  - python=3.8.13
  - numpy

A: 检查下 pkgs_dirs 是否设置正确,以及在该目录下是否有提示信息中的包。不能有任何中间目录,例如设置 conda 的包目录为 pkgs,那么 pkgs/pkgs/numpy 是无法被 conda 找到的。

Q: wheel 包未安装

error: invalid command 'bdist_wheel'

A: 使用 pip 安装 wheel

pip install wheel

Q: future 包缺失

Failed to build future
ERROR: Failed to build one or more wheels
WARNING: Ignoring invalid distribution -ip (d:\program files\python3.7\lib\site-packages)

A: 可以手动收集下 future 包,并上传至离线环境。

pip wheel future

Q: 构建 future whl 包失败

Failed to build future
ERROR: Failed to build one or more wheels
WARNING: Ignoring invalid distribution -ip (d:\program files\python3.7\lib\site-packages)

A: 因 pip 下载、安装未成功而导致的环境异常,进入 pip --version 输出信息中的 site-packages/pip 目录,删除~开头的一些临时文件。

(base) [root@node1 ~]# pip --version
pip 21.2.4 from /root/miniconda3/lib/python3.9/site-packages/pip (python 3.9)

Q: Python API 安装失败

ERROR: Could not find a version that satisfies the requirement dolphindb (from versions: none)

A: 安装环境与 whl 包不匹配导致。可以按如下步骤处理:

  1. 通过 PyPI 确认是否存在支持当前操作系统(例如 Linux ARM 架构、Mac M1等)的 DolphinDB API 安装包。若存在,则将该 whl 包下载至本地。
  2. 通过如下命令查看适合当前系统环境支持的 whl 包后缀。
pip debug --verbose
  1. 根据 Compatible tags 的显示信息,将 DolphinDB 的 whl 包名修改为适合系统架构的名称。以 Mac(x86_64) 系统为例:安装包名为“dolphindb-1.30.19.2-cp37-cp37m-macosx_10_16_x86_64.whl”。但查询到 pip 支持的当前系统版本为10.13,则使用“10_13”替换 whl 包名中的“10_16”。
  2. 尝试安装更名后的 whl 包。

若执行完上述操作后,仍无法安装或导入,可在 DolphinDB 社区 中进行反馈。

相关推荐

总结下SpringData JPA 的常用语法

SpringDataJPA常用有两种写法,一个是用Jpa自带方法进行CRUD,适合简单查询场景、例如查询全部数据、根据某个字段查询,根据某字段排序等等。另一种是使用注解方式,@Query、@Modi...

解决JPA在多线程中事务无法生效的问题

在使用SpringBoot2.x和JPA的过程中,如果在多线程环境下发现查询方法(如@Query或findAll)以及事务(如@Transactional)无法生效,通常是由于S...

PostgreSQL系列(一):数据类型和基本类型转换

自从厂子里出来后,数据库的主力就从Oracle变成MySQL了。有一说一哈,贵确实是有贵的道理,不是开源能比的。后面的工作里面基本上就是主MySQL,辅MongoDB、ES等NoSQL。最近想写一点跟...

基于MCP实现text2sql

目的:基于MCP实现text2sql能力参考:https://blog.csdn.net/hacker_Lees/article/details/146426392服务端#选用开源的MySQLMCP...

ORACLE 错误代码及解决办法

ORA-00001:违反唯一约束条件(.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常。ORA-00017:请求会话以设置跟踪事件ORA-00018:超出最大会话数ORA-00...

从 SQLite 到 DuckDB:查询快 5 倍,存储减少 80%

作者丨Trace译者丨明知山策划丨李冬梅Trace从一开始就使用SQLite将所有数据存储在用户设备上。这是一个非常不错的选择——SQLite高度可靠,并且多种编程语言都提供了广泛支持...

010:通过 MCP PostgreSQL 安全访问数据

项目简介提供对PostgreSQL数据库的只读访问功能。该服务器允许大型语言模型(LLMs)检查数据库的模式结构,并执行只读查询操作。核心功能提供对PostgreSQL数据库的只读访问允许L...

发现了一个好用且免费的SQL数据库工具(DBeaver)

缘起最近Ai不是大火么,想着自己也弄一些开源的框架来捣腾一下。手上用着Mac,但Mac都没有显卡的,对于学习Ai训练模型不方便,所以最近新购入了一台4090的拯救者,打算用来好好学习一下Ai(呸,以上...

微软发布.NET 10首个预览版:JIT编译器再进化、跨平台开发更流畅

IT之家2月26日消息,微软.NET团队昨日(2月25日)发布博文,宣布推出.NET10首个预览版更新,重点改进.NETRuntime、SDK、libraries、C#、AS...

数据库管理工具Navicat Premium最新版发布啦

管理多个数据库要么需要使用多个客户端应用程序,要么找到一个可以容纳你使用的所有数据库的应用程序。其中一个工具是NavicatPremium。它不仅支持大多数主要的数据库管理系统(DBMS),而且它...

50+AI新品齐发,微软Build放大招:拥抱Agent胜算几何?

北京时间5月20日凌晨,如果你打开微软Build2025开发者大会的直播,最先吸引你的可能不是一场原本属于AI和开发者的技术盛会,而是开场不久后的尴尬一幕:一边是几位微软员工在台下大...

揭秘:一条SQL语句的执行过程是怎么样的?

数据库系统能够接受SQL语句,并返回数据查询的结果,或者对数据库中的数据进行修改,可以说几乎每个程序员都使用过它。而MySQL又是目前使用最广泛的数据库。所以,解析一下MySQL编译并执行...

各家sql工具,都闹过哪些乐子?

相信这些sql工具,大家都不陌生吧,它们在业内绝对算得上第一梯队的产品了,但是你知道,他们都闹过什么乐子吗?首先登场的是Navicat,这款强大的数据库管理工具,曾经让一位程序员朋友“火”了一把。Na...

详解PG数据库管理工具--pgadmin工具、安装部署及相关功能

概述今天主要介绍一下PG数据库管理工具--pgadmin,一起来看看吧~一、介绍pgAdmin4是一款为PostgreSQL设计的可靠和全面的数据库设计和管理软件,它允许连接到特定的数据库,创建表和...

Enpass for Mac(跨平台密码管理软件)

还在寻找密码管理软件吗?密码管理软件有很多,但是综合素质相当优秀且完全免费的密码管理软件却并不常见,EnpassMac版是一款免费跨平台密码管理软件,可以通过这款软件高效安全的保护密码文件,而且可以...