百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Pandas宝藏函数-concat()

liuian 2025-01-12 16:25 16 浏览

作者:小伍哥

来源:AI入门学习

在数据处理过程中,经常会遇到多个表进行拼接合并的需求,在Pandas中有多个拼接合并的方法,每种方法都有自己擅长的拼接方式,本文对pd.concat()进行详细讲解,希望对你有帮助。pd.concat()函数可以沿着指定的轴将多个dataframe或者series拼接到一起,这一点和另一个常用的pd.merge()函数不同,pd.merge()解决数据库样式的左右拼接,不能解决上下拼接。

一、基本语法

pd.concat(

     objs,      

     axis=0,     

     join='outer',

     ignore_index=False,

     keys=None,      

     levels=None,     

     names=None,      

     verify_integrity=False,     

     copy=True)

二、参数含义

  • objs:Series,DataFrame或Panel对象的序列或映射,如果传递了dict,则排序的键将用作键参数
  • axis:{0,1,...},默认为0,也就是纵向上进行合并。沿着连接的轴。
  • join:{'inner','outer'},默认为“outer”。如何处理其他轴上的索引。outer为联合和inner为交集。
  • ignore_index:boolean,default False。如果为True,请不要使用并置轴上的索引值。结果轴将被标记为0,...,n-1。如果要连接其中并置轴没有有意义的索引信息的对象,这将非常有用。注意,其他轴上的索引值在连接中仍然受到尊重。
  • keys:序列,默认值无。使用传递的键作为最外层构建层次索引。如果为多索引,应该使用元组。
  • levels:序列列表,默认值无。用于构建MultiIndex的特定级别(唯一值)。否则,它们将从键推断。
  • names:list,default无。结果层次索引中的级别的名称。
  • verify_integrity:boolean,default False。检查新连接的轴是否包含重复项。这相对于实际的数据串联可能是非常昂贵的。
  • copy:boolean,default True。如果为False,请勿不必要地复制数据。

三、竖向堆叠

#构建需要的数据表
import pandas as pd
df1 = pd.DataFrame({'A':['A{}'.format(i) for i in range(0,4)],
                    'B':['B{}'.format(i) for i in range(0,4)],
                    'C':['C{}'.format(i) for i in range(0,4)]
                 })


df2 = pd.DataFrame({'A':['A{}'.format(i) for i in range(4,8)],
                    'B':['B{}'.format(i) for i in range(4,8)],
                    'C':['C{}'.format(i) for i in range(4,8)]
                 })
df3 = pd.DataFrame({'A':['A{}'.format(i) for i in range(8,12)],
                    'B':['B{}'.format(i) for i in range(8,12)],
                    'C':['C{}'.format(i) for i in range(8,12)]
                 })
现将表构成list,然后在作为concat的输入
frames = [df1, df2, df3]

result = pd.concat(frames)

 A    B    C

0   A0   B0   C0

1   A1   B1   C1

2   A2   B2   C2

3   A3   B3   C3

0   A4   B4   C4

1   A5   B5   C5

2   A6   B6   C6

3   A7   B7   C7

0   A8   B8   C8

1   A9   B9   C9

2  A10  B10  C10

3  A11  B11  C11

传入也可以是字典

frames = {'df1':df1, 'df2':df2,'df3':df3}

result = pd.concat(frames)

   A    B    C

df1 0   A0   B0   C0

    1   A1   B1   C1

    2   A2   B2   C2

    3   A3   B3   C3

df2 0   A4   B4   C4

    1   A5   B5   C5

    2   A6   B6   C6

    3   A7   B7   C7

df3 0   A8   B8   C8

    1   A9   B9   C9

    2  A10  B10  C10

    3  A11  B11  C11
三、横向拼接

1、axis

当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并

#再构建一个表

df4 = pd.DataFrame({'C':['C{}'.format(i) for i in range(3,9)],

                    'E':['E{}'.format(i) for i in range(3,9)],

                    'F':['F{}'.format(i) for i in range(3,9)]

                 })

pd.concat([df1,df4], axis=1)

     A    B    C   C   E   F

0   A0   B0   C0  C3  E3  F3

1   A1   B1   C1  C4  E4  F4

2   A2   B2   C2  C5  E5  F5

3   A3   B3   C3  C6  E6  F6

4  NaN  NaN  NaN  C7  E7  F7

5  NaN  NaN  NaN  C8  E8  F8

2、join

加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。

#  join='inner' 取交集

pd.concat([df1, df4], axis=1, join='inner')

    A   B   C   C   E   F

0  A0  B0  C0  C3  E3  F3

1  A1  B1  C1  C4  E4  F4

2  A2  B2  C2  C5  E5  F5

3  A3  B3  C3  C6  E6  F6




# join='outer' 和 默认值相同

pd.concat([df1, df4], axis=1, join='outer')

     A    B    C   C   E   F

0   A0   B0   C0  C3  E3  F3

1   A1   B1   C1  C4  E4  F4

2   A2   B2   C2  C5  E5  F5

3   A3   B3   C3  C6  E6  F6

4  NaN  NaN  NaN  C7  E7  F7

5  NaN  NaN  NaN  C8  E8  F8
四、对比append方法

append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)

df1.append(df2)

    A   B   C

0  A0  B0  C0

1  A1  B1  C1

2  A2  B2  C2

3  A3  B3  C3

0  A4  B4  C4

1  A5  B5  C5

2  A6  B6  C6

3  A7  B7  C7
五、忽略index

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。

pd.concat([df1, df4], axis=1, ignore_index=True) 

    0    1    2   3   4   5

0   A0   B0   C0  C3  E3  F3

1   A1   B1   C1  C4  E4  F4

2   A2   B2   C2  C5  E5  F5

3   A3   B3   C3  C6  E6  F6

4  NaN  NaN  NaN  C7  E7  F7

5  NaN  NaN  NaN  C8  E8  F8
六、增加区分组键

前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源

1、可以直接用key参数实现

pd.concat([df1,df2,df3], keys=['x', 'y', 'z'])

 A    B    C

x 0   A0   B0   C0

  1   A1   B1   C1

  2   A2   B2   C2

  3   A3   B3   C3

y 0   A4   B4   C4

  1   A5   B5   C5

  2   A6   B6   C6

  3   A7   B7   C7

z 0   A8   B8   C8

  1   A9   B9   C9

  2  A10  B10  C10

  3  A11  B11  C11

2、传入字典来增加分组键

frames = {'df1':df1, 'df2':df2,'df3':df3}
result = pd.concat(frames)
   A    B    C
df1 0   A0   B0   C0
    1   A1   B1   C1
    2   A2   B2   C2
    3   A3   B3   C3
df2 0   A4   B4   C4
    1   A5   B5   C5
    2   A6   B6   C6
    3   A7   B7   C7
df3 0   A8   B8   C8
    1   A9   B9   C9
    2  A10  B10  C10
    3  A11  B11  C11

七、加入新的行

1、列字段相同的加入

append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。

s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

df1.append(s2, ignore_index=True)

  A   B   C    D

0  A0  B0  C0  NaN

1  A1  B1  C1  NaN

2  A2  B2  C2  NaN

3  A3  B3  C3  NaN

4  X0  X1  X2   X3

2、列字段不同的加入

如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。

dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},

         {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]

df1.append(dicts, ignore_index=True)

 A   B   C    X    Y

0  A0  B0  C0  NaN  NaN

1  A1  B1  C1  NaN  NaN

2  A2  B2  C2  NaN  NaN

3  A3  B3  C3  NaN  NaN

4   1   2   3  4.0  NaN

5   5   6   7  NaN  8.0


相关推荐

vue怎么和后端php配合

Vue和后端PHP可以通过HTTP请求进行配合。首先,前端Vue可以使用axios库或者Vue自带的$http对象来发送HTTP请求到后端PHP接口。通过axios库发送POST、GET、PUT等请求...

Ansible最佳实践之 AWX 使用 Ansible 与 API 通信

#头条创作挑战赛#API简单介绍红帽AWX提供了一个类似Swagger的RESTful风格的Web服务框架,可以和awx直接交互。使管理员和开发人员能够在webUI之外控制其...

PHP8.3 错误处理革命:Exception 与 Error 全面升级

亲爱的小伙伴,好久没有发布信息了,最近学习了一下PHP8.3的升级,都有哪些优化和提升,把学到的分享出来给需要的小伙伴充下电。技术段位:高可用性必修目标收益:精准错误定位+异常链路追踪适配场景...

使用 mix/vega + mix/db 进行现代化的原生 PHP 开发

最近几年在javascript、golang生态中游走,发现很多npm、gomod的优点。最近回过头开发MixPHPV3,发现composer其实一直都是一个非常优秀的工具,但是...

15 个非常好用的 JSON 工具

JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...

php8环境原生实现rpc

大数据分布式架构盛行时代的程序员面试,常常遇到分布式架构,RPC,本文的主角是RPC,英文名为RemoteProcedureCall,翻译过来为“远程过程调用”。主流的平台中都支持各种远程调用技术...

「PHP编程」如何搭建私有Composer包仓库?

在前一篇文章「PHP编程」如何制作自己的Composer包?中,我们已经介绍了如何制作自己的composer包,以及如何使用composer安装自己制作的composer包。不过,这其中有...

WAF-Bypass之SQL注入绕过思路总结

过WAF(针对云WAF)寻找真实IP(源站)绕过如果流量都没有经过WAF,WAF当然无法拦截攻击请求。当前多数云WAF架构,例如百度云加速、阿里云盾等,通过更改DNS解析,把流量引入WAF集群,流量经...

【推荐】一款 IDEA 必备的 JSON 处理工具插件 — Json Assistant

JsonAssistant是基于IntelliJIDEs的JSON工具插件,让JSON处理变得更轻松!主要功能完全支持JSON5JSON窗口(多选项卡)选项卡更名移动至主编辑器用...

技术分享 | 利用PHAR协议进行PHP反序列化攻击

PHAR(“PhpARchive”)是PHP中的打包文件,相当于Java中的JAR文件,在php5.3或者更高的版本中默认开启。PHAR文件缺省状态是只读的,当我们要创建一个Phar文件需要修改...

php进阶到架构之swoole系列教程(一)windows安装swoole

目录概述安装Cygwin安装swoolephp7进阶到架构师相关阅读概述这是关于php进阶到架构之swoole系列学习课程:第一节:windows安装swoole学习目标:在Windows环境将搭建s...

go 和 php 性能如何进行对比?

PHP性能很差吗?每次讲到PHP和其他语言间的性能对比,似乎都会发现这样一个声音:单纯的性能对比没有意义,主要瓶颈首先是数据库,其次是业务代码等等。好像PHP的性能真的不能单独拿出来讨论似的。但其实一...

Linux(CentOS )手动搭建LNMP(Linux+Nginx+Mysql+PHP)坏境

CentOS搭建LNMP(Linux+Nginx+Mysql+PHP)坏境由于网上各种版本新旧不一,而且Linux版本也不尽相同,所以自己写一遍根据官网的提示自己手动搭建过程。看官方文档很重要,永远...

json和jsonp区别

JSON和JSONP虽然只有一个字母的差别,但其实他们根本不是一回事儿:JSON是一种数据交换格式,而JSONP是一种非官方跨域数据交互协议。一个是描述信息的格式,一个是信息传递的约定方法。一、...

web后端正确的返回JSON

在web开发中,前端和后端发生数据交换传输现在最常见的形式就是异步ajax交互,一般返回给js都是json,如何才是正确的返回呢?前端代码想要获取JSON数据代码如下:$.get('/user-inf...