分享几个令人相见恨晚的Pandas函数
liuian 2025-01-10 15:15 14 浏览
作者:俊欣
来源:关于数据分析与可视化
又是新的一周,今天小编给大家来分享几个好用到爆的Pandas函数,或许不那么为人所知,但是相信会给大家在数据分析与挖掘的过程中起到不小的帮助。
创建数据集
首先我们先来创建一个数据集,代码如下
import numpy as np
import pandas as pd
df = pd.DataFrame({
"date": pd.date_range(start="2021-11-20", periods=100, freq="D"),
"class": ["A","B","C","D"] * 25,
"amount": np.random.randint(10, 100, size=100)
})
df.head()
output
To_period
当我们在处理日期数据时,有时候需要提取出月份的数据,有时候我们需要的是季度的数据,这里就可以通过to_period()方法来实现了,代码如下
df["year"] = df["date"].dt.to_period("Y")
df["month"] = df["date"].dt.to_period("M")
df["day"] = df["date"].dt.to_period("D")
df["quarter"] = df["date"].dt.to_period("Q")
df.head()
output
在此基础之上,我们可以进一步对数据进行分析,例如
df["month"].value_counts()
output
我们想要筛选出“2021-12”该时段的数据,代码如下
df[df['month'] == "2021-12"].head()
output
生成假数据
我们在建模、训练模型的时候,需要用到大量的数据集,然鹅很多时候我们会遇到数据量不够的情况,小编之前写过一篇相关的教程,使用Python中的faker模块或者通过一些深度学习的模型来生成假数据
【原创好文】当机器学习遇到数据量不够时,这几个Python技巧为你化解难题
pandas模块中也有一些相关的方法来帮助我们解决数据量不够的问题,代码如下
pd.util.testing.makeDataFrame()
output
默认生成的假数据是30行4列的,当然我们也可以指定生成数据的行数和列数,代码如下
pd.util.testing.makeCustomDataframe(nrows=1000, ncols=5)
output
要是我们希望创建的数据集当中存在的缺失值,调用的则是makeMissingDataframe()方法
pd.util.testing.makeMissingDataframe()
output
要是我们希望创建的数据集包含了整型、浮点型以及时间日期等其他类型的数据,调用的是makeMixedDataFrame()方法
pd.util.testing.makeMixedDataFrame()
output
将数据集导出至压缩包中
众多周知,我们可以轻松地将数据集导出至csv文件、json格式的文件等等,但是有时候我们想要节省存储的资源,例如在文件的传送过程当中,想将其导出至压缩包当中,代码如下
df = pd.util.testing.makeCustomDataframe(nrows=1000, ncols=5)
df.shape
output
(1000, 5)
我们先将其存储成csv格式的文件,看一下文件的大小,结果大概是占到了45KB的存储,代码如下
import os
os.path.getsize("sample.csv")/1024
output
44
要是最后导出至压缩包当中呢,我们看一下文件的大小有多少?代码如下
df.to_csv('sample.csv.gz', compression='gzip')
os.path.getsize('sample.csv.gz')/1024
output
14
结果只占到了13KB的空间大小,大概是前者的三分之一吧,当然pandas还能够直接读取压缩包变成DataFrame数据集,代码如下
df = pd.read_csv('sample.csv.gz', compression='gzip', index_col=0)
df.head()
output
一行代码让Pandas提速
很多时候我们想要通过pandas中的apply()方法将自定义函数或者是一些内部自带的函数应用到DataFrame每一行的数据当中,如果行数非常多的话,处理起来会非常地耗时间,这里使用的是swifter可以自动使apply()方法的运行速度达到最快,并且只需要一行代码即可,例如
import swifter
df.swifter.apply(lambda x: x.max() - x.mean())
当然使用前,我们需要先前下载该模块,使用pip命令
pip install swifter
相关推荐
- vue怎么和后端php配合
-
Vue和后端PHP可以通过HTTP请求进行配合。首先,前端Vue可以使用axios库或者Vue自带的$http对象来发送HTTP请求到后端PHP接口。通过axios库发送POST、GET、PUT等请求...
- Ansible最佳实践之 AWX 使用 Ansible 与 API 通信
-
#头条创作挑战赛#API简单介绍红帽AWX提供了一个类似Swagger的RESTful风格的Web服务框架,可以和awx直接交互。使管理员和开发人员能够在webUI之外控制其...
- PHP8.3 错误处理革命:Exception 与 Error 全面升级
-
亲爱的小伙伴,好久没有发布信息了,最近学习了一下PHP8.3的升级,都有哪些优化和提升,把学到的分享出来给需要的小伙伴充下电。技术段位:高可用性必修目标收益:精准错误定位+异常链路追踪适配场景...
- 使用 mix/vega + mix/db 进行现代化的原生 PHP 开发
-
最近几年在javascript、golang生态中游走,发现很多npm、gomod的优点。最近回过头开发MixPHPV3,发现composer其实一直都是一个非常优秀的工具,但是...
- 15 个非常好用的 JSON 工具
-
JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...
- php8环境原生实现rpc
-
大数据分布式架构盛行时代的程序员面试,常常遇到分布式架构,RPC,本文的主角是RPC,英文名为RemoteProcedureCall,翻译过来为“远程过程调用”。主流的平台中都支持各种远程调用技术...
- 「PHP编程」如何搭建私有Composer包仓库?
-
在前一篇文章「PHP编程」如何制作自己的Composer包?中,我们已经介绍了如何制作自己的composer包,以及如何使用composer安装自己制作的composer包。不过,这其中有...
- WAF-Bypass之SQL注入绕过思路总结
-
过WAF(针对云WAF)寻找真实IP(源站)绕过如果流量都没有经过WAF,WAF当然无法拦截攻击请求。当前多数云WAF架构,例如百度云加速、阿里云盾等,通过更改DNS解析,把流量引入WAF集群,流量经...
- 【推荐】一款 IDEA 必备的 JSON 处理工具插件 — Json Assistant
-
JsonAssistant是基于IntelliJIDEs的JSON工具插件,让JSON处理变得更轻松!主要功能完全支持JSON5JSON窗口(多选项卡)选项卡更名移动至主编辑器用...
- 技术分享 | 利用PHAR协议进行PHP反序列化攻击
-
PHAR(“PhpARchive”)是PHP中的打包文件,相当于Java中的JAR文件,在php5.3或者更高的版本中默认开启。PHAR文件缺省状态是只读的,当我们要创建一个Phar文件需要修改...
- php进阶到架构之swoole系列教程(一)windows安装swoole
-
目录概述安装Cygwin安装swoolephp7进阶到架构师相关阅读概述这是关于php进阶到架构之swoole系列学习课程:第一节:windows安装swoole学习目标:在Windows环境将搭建s...
- go 和 php 性能如何进行对比?
-
PHP性能很差吗?每次讲到PHP和其他语言间的性能对比,似乎都会发现这样一个声音:单纯的性能对比没有意义,主要瓶颈首先是数据库,其次是业务代码等等。好像PHP的性能真的不能单独拿出来讨论似的。但其实一...
- Linux(CentOS )手动搭建LNMP(Linux+Nginx+Mysql+PHP)坏境
-
CentOS搭建LNMP(Linux+Nginx+Mysql+PHP)坏境由于网上各种版本新旧不一,而且Linux版本也不尽相同,所以自己写一遍根据官网的提示自己手动搭建过程。看官方文档很重要,永远...
- json和jsonp区别
-
JSON和JSONP虽然只有一个字母的差别,但其实他们根本不是一回事儿:JSON是一种数据交换格式,而JSONP是一种非官方跨域数据交互协议。一个是描述信息的格式,一个是信息传递的约定方法。一、...
- web后端正确的返回JSON
-
在web开发中,前端和后端发生数据交换传输现在最常见的形式就是异步ajax交互,一般返回给js都是json,如何才是正确的返回呢?前端代码想要获取JSON数据代码如下:$.get('/user-inf...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)