Flink 如何读取和写入 Clickhouse?
liuian 2025-01-08 15:17 28 浏览
Flink 从入门到精通 系列文章
?问题导读:
1.Flink读写Clickhouse支持哪个版本?
2.ClickHouse读写Clickhouse有哪些参数?
3.ClickHouse读写Clickhouse参数都有哪些说明?
?
ClickHouse 读取
一、插件名称
名称:clickhousereader
二、支持的数据源版本
ClickHouse 19.x及以上
三、参数说明
「jdbcUrl」
描述:针对关系型数据库的jdbc连接字符串
jdbcUrl参考文档:clickhouse-jdbc官方文档
必选:是
默认值:无
「username」
描述:数据源的用户名
必选:是
默认值:无
「password」
描述:数据源指定用户名的密码
必选:是
默认值:无
「where」
描述:筛选条件,reader插件根据指定的column、table、where条件拼接SQL,并根据这个SQL进行数据抽取。在实际业务场景中,往往会选择当天的数据进行同步,可以将where条件指定为gmt_create > time。
注意:不可以将where条件指定为limit 10,limit不是SQL的合法where子句。
必选:否
默认值:无
「splitPk」
描述:当speed配置中的channel大于1时指定此参数,Reader插件根据并发数和此参数指定的字段拼接sql,使每个并发读取不同的数据,提升读取速率。注意:推荐splitPk使用表主键,因为表主键通常情况下比较均匀,因此切分出来的分片也不容易出现数据热点。目前splitPk仅支持整形数据切分,不支持浮点、字符串、日期等其他类型。如果用户指定其他非支持类型,FlinkX将报错!如果channel大于1但是没有配置此参数,任务将置为失败。
必选:否
默认值:无
「fetchSize」
描述:读取时每批次读取的数据条数。
注意:此参数的值不可设置过大,否则会读取超时,导致任务失败。
必选:否
默认值:1000
「queryTimeOut」
描述:查询超时时间,单位秒。
注意:当数据量很大,或者从视图查询,或者自定义sql查询时,可通过此参数指定超时时间。
必选:否
默认值:1000
「customSql」
描述:自定义的查询语句,如果只指定字段不能满足需求时,可通过此参数指定查询的sql,可以是任意复杂的查询语句。注意:只能是查询语句,否则会导致任务失败;查询语句返回的字段需要和column列表里的字段严格对应;当指定了此参数时,connection里指定的table无效;当指定此参数时,column必须指定具体字段信息,不能以*号代替;
必选:否
默认值:无
「column」
描述:需要读取的字段。
格式:支持3种格式
1.读取全部字段,如果字段数量很多,可以使用下面的写法:
"column":["*"]
2.只指定字段名称:
"column":["id","name"]
3.指定具体信息:
"column": [{
"name": "col",
"type": "datetime",
"format": "yyyy-MM-dd hh:mm:ss",
"value": "value"
}]
属性说明:
?name:字段名称
type:字段类型,可以和数据库里的字段类型不一样,程序会做一次类型转换
format:如果字段是时间字符串,可以指定时间的格式,将字段类型转为日期格式返回
value:如果数据库里不存在指定的字段,则会报错。如果指定的字段存在,当指定字段的值为时,会以此value值作为默认值返回
?
必选:是
默认值:无
「polling」
描述:是否开启间隔轮询,开启后会根据pollingInterval轮询间隔时间周期性的从数据库拉取数据。开启间隔轮询还需配置参数pollingInterval,increColumn,可以选择配置参数startLocation。若不配置参数startLocation,任务启动时将会从数据库中查询增量字段最大值作为轮询的开始位置。
必选:否
默认值:false
「pollingInterval」
描述:轮询间隔时间,从数据库中拉取数据的间隔时间,默认为5000毫秒。
必选:否
默认值:5000
「requestAccumulatorInterval」
描述:发送查询累加器请求的间隔时间。
必选:否
默认值:2
配置示例
1、基础配置
{
"job": {
"content": [{
"reader": {
"parameter" : {
"column" : [ {
"name" : "id",
"type" : "bigint",
"key" : "id"
}, {
"name" : "user_id",
"type" : "bigint",
"key" : "user_id"
}, {
"name" : "name",
"type" : "varchar",
"key" : "name"
} ],
"username" : "username",
"password" : "password",
"connection" : [ {
"jdbcUrl" : [ "jdbc:clickhouse://0.0.0.1:8123/dtstack" ],
"table" : [ "tableTest" ]
} ],
"where": "id > 1",
"splitPk": "id",
"fetchSize": 1000,
"queryTimeOut": 1000,
"customSql": "",
"requestAccumulatorInterval": 2
},
"name" : "clickhousereader"
},
"writer": {
"name": "streamwriter",
"parameter": {
"print": true
}
}
}],
"setting": {
"speed": {
"channel": 1,
"bytes": 0
},
"errorLimit": {
"record": 100
}
}
}
}
2、多通道
{
"job": {
"content": [{
"reader": {
"parameter" : {
"column" : [ {
"name" : "id",
"type" : "bigint",
"key" : "id"
}, {
"name" : "user_id",
"type" : "bigint",
"key" : "user_id"
}, {
"name" : "name",
"type" : "varchar",
"key" : "name"
} ],
"username" : "username",
"password" : "password",
"connection" : [ {
"jdbcUrl" : [ "jdbc:clickhouse://0.0.0.1:8123/dtstack" ],
"table" : [ "tableTest" ]
} ],
"where": "id > 1",
"splitPk": "id",
"fetchSize": 1000,
"queryTimeOut": 1000,
"customSql": "",
"requestAccumulatorInterval": 2
},
"name" : "clickhousereader"
},
"writer": {
"name": "streamwriter",
"parameter": {
"print": true
}
}
}],
"setting": {
"speed": {
"channel": 3,
"bytes": 0
},
"errorLimit": {
"record": 100
}
}
}
}
3、指定customSql
{
"job": {
"content": [{
"reader": {
"parameter" : {
"column" : [ {
"name" : "id",
"type" : "bigint",
"key" : "id"
}, {
"name" : "user_id",
"type" : "bigint",
"key" : "user_id"
}, {
"name" : "name",
"type" : "varchar",
"key" : "name"
} ],
"username" : "username",
"password" : "password",
"connection" : [ {
"jdbcUrl" : [ "jdbc:clickhouse://0.0.0.1:8123/dtstack" ],
"table" : [ "tableTest" ]
} ],
"where": "id > 1",
"splitPk": "id",
"fetchSize": 1000,
"queryTimeOut": 1000,
"customSql": "select id from tableTest",
"requestAccumulatorInterval": 2
},
"name" : "clickhousereader"
},
"writer": {
"name": "streamwriter",
"parameter": {
"print": true
}
}
}],
"setting": {
"speed": {
"channel": 1,
"bytes": 0
},
"errorLimit": {
"record": 100
}
}
}
}
4、增量同步指定startLocation
{
"job": {
"content": [{
"reader": {
"parameter" : {
"column" : [ {
"name" : "id",
"type" : "bigint",
"key" : "id"
}, {
"name" : "user_id",
"type" : "bigint",
"key" : "user_id"
}, {
"name" : "name",
"type" : "varchar",
"key" : "name"
} ],
"username" : "username",
"password" : "password",
"connection" : [ {
"jdbcUrl" : [ "jdbc:clickhouse://0.0.0.1:8123/dtstack" ],
"table" : [ "tableTest" ]
} ],
"where": "id > 1",
"splitPk": "id",
"fetchSize": 1000,
"queryTimeOut": 1000,
"customSql": "",
"increColumn": "id",
"startLocation": "20",
"requestAccumulatorInterval": 2
},
"name" : "clickhousereader"
},
"writer": {
"name": "streamwriter",
"parameter": {
"print": true
}
}
}],
"setting": {
"speed": {
"channel": 1,
"bytes": 0
},
"errorLimit": {
"record": 100
}
}
}
}
5、间隔轮询
{
"job": {
"content": [{
"reader": {
"parameter" : {
"column" : [ {
"name" : "id",
"type" : "bigint",
"key" : "id"
}, {
"name" : "user_id",
"type" : "bigint",
"key" : "user_id"
}, {
"name" : "name",
"type" : "varchar",
"key" : "name"
} ],
"username" : "username",
"password" : "password",
"connection" : [ {
"jdbcUrl" : [ "jdbc:clickhouse://0.0.0.1:8123/dtstack" ],
"table" : [ "tableTest" ]
} ],
"where": "id > 1",
"splitPk": "id",
"fetchSize": 1000,
"queryTimeOut": 1000,
"customSql": "",
"requestAccumulatorInterval": 2,
"polling": true,
"pollingInterval": 3000
},
"name" : "clickhousereader"
},
"writer": {
"name": "streamwriter",
"parameter": {
"print": true
}
}
}],
"setting": {
"speed": {
"channel": 1,
"bytes": 0
},
"errorLimit": {
"record": 100
}
}
}
}
ClickHouse 写入
一、插件名称
名称:clickhousewriter
二、支持的数据源版本
ClickHouse 19.x及以上
三、参数说明
「jdbcUrl」
描述:针对关系型数据库的jdbc连接字符串
必选:是
默认值:无
「username」
描述:数据源的用户名
必选:是
默认值:无
「password」
描述:数据源指定用户名的密码
必选:是
默认值:无
「column」
描述:目的表需要写入数据的字段,字段之间用英文逗号分隔。例如: "column": ["id","name","age"]。
必选:是
默认值:否
默认值:无
「preSql」
描述:写入数据到目的表前,会先执行这里的一组标准语句
必选:否
默认值:无
「postSql」
描述:写入数据到目的表后,会执行这里的一组标准语句
必选:否
默认值:无
「table」
描述:目的表的表名称。目前只支持配置单个表,后续会支持多表
必选:是
默认值:无
「writeMode」
描述:控制写入数据到目标表采用 insert into 语句,只支持insert操作
必选:是
所有选项:insert
默认值:insert
「batchSize」
描述:一次性批量提交的记录数大小,该值可以极大减少FlinkX与数据库的网络交互次数,并提升整体吞吐量。但是该值设置过大可能会造成FlinkX运行进程OOM情况
必选:否
默认值:1024
「插件下载」
公众号内回复 「flinkx」即可获取
?转载:https://www.aboutyun.com/forum.php?mod=viewthread&tid=29271
?
基于 Apache Flink 的实时监控告警系统
关于数据中台的深度思考与总结(干干货)
日志收集Agent,阴暗潮湿的地底世界
2020 继续踏踏实实的做好自己
你点的每个赞,我都当成了喜欢
相关推荐
- 快速上手maven
-
Maven的作用在开发过程中需要用到各种各样的jar包,查找和下载这些jar包是件费时费力的事,特别是英文官方网站,可以将Maven看成一个整合了所有开源jar包的合集,我们需要jar包只需要从Mav...
- Windows系统——配置java环境变量
-
怎么配置java环境变量呢?首先是安装好jdk然后我的电脑右键选择属性然后选择左侧高级系统设置高级然后点环境变量然后在用户变量或系统变量中配置,用户变量指的是只有当前用户可用,系统变量指的是系统中...
- ollama本地部署更改默认C盘,Windows配置环境变量方法
-
ollama是一个大语言模型(LLM——LargeLanguageModel),本地电脑安装网上也要很多教程,看上去非常简单,一直下一步,然后直接就可以使用了。但是我在实操的时候并不是这样,安装完...
- # Windows 环境变量 Path 显示样式更改
-
#怎样学习Java##Windows环境变量Path显示样式更改##1、传统Path环境变量显示:```---》键盘上按【WIN+I】打开系统【设置】---》依次点击---》【系统...
- 如何在Windows中创建用户和系统环境变量
-
在Windows中创建环境变量之前您应该了解的事情在按照本指南中所示的任何步骤创建指向文件夹、文件或其他任何内容的用户和系统变量之前,您应该了解两件事。第一个也是最重要的一个是了解什么是环境变量。...
- Windows 中的环境变量是什么?
-
Windows中的环境变量是什么?那么,Windows中的环境变量是什么?简而言之,环境变量是描述应用程序和程序运行环境的变量。所有类型的程序都使用环境变量来回答以下问题:我安装的计算机的名称是什么...
- 【Python程序开发系列】谈一谈Windows环境变量:系统和用户变量
-
这是我的第350篇原创文章。一、引言环境变量(environmentvariables)一般是指在操作系统中用来指定操作系统运行环境的一些参数,如:临时文件夹位置和系统文件夹位置等。环境变量是在操作...
- 系统小技巧:还原Windows10路径环境变量
-
有时,我们在Windows10的“运行”窗口中执行一些命令或运行一些程序,这时即便没有指定程序的具体路径,只输入程序的名称(如notepad.exe),便可以迅速调用成功。这是因为Windows默认...
- Windows10系统的“环境变量”在哪里呢?
-
当我们在操作系统是Windows10的电脑里安装了一些软件,要通过配置环境变量才能使用软件时,在哪里能找到“环境变量”窗口呢?可以按照下面的步骤找到“环境变量”。说明:下面的步骤和截图是在Window...
- 系统小技巧:彻底弄懂Windows 10环境变量
-
每当我们进行系统清理时,清理软件总能自动找到Windows的临时文件夹之所在,然后加以清理,即便是我们重定向了TEMP目录也是如此。究其原因,是因为清理软件会根据TEMP环境变量来判断现有临时文件夹的...
- MySQL 5.7 新特性大全和未来展望
-
本文转自微信公众号:高可用架构作者:杨尚刚引用美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计。前新浪高级数据库工程师,负责新浪微博核心数据库架构改造优化,以及数据库相关的服务器存...
- MySQL系列-源码编译安装(v8.0.25)
-
一、前言生产环境建议使用二进制安装法,其优点是部署简单、快速、方便,并且相对"yum/rpm安装"方法能更方便地自定义文件存放的目录结构,方便用脚本批量部署,方便日后运维管理。在生产...
- MySQL如何实时同步数据到ES?试试这款阿里开源的神器!
-
前几天在网上冲浪的时候发现了一个比较成熟的开源中间件——Canal。在了解了它的工作原理和使用场景后,顿时产生了浓厚的兴趣。今天,就让我们跟随我的脚步,一起来揭开它神秘的面纱吧。简介canal翻译为...
- 技术老兵十年专攻MySQL:编写了763页核心总结,90%MySQL问题全解
-
MySQL是开放源码的关系数据库管理系统,由于性能高、成本低、可靠性好,成为现在最流行的开源数据库。MySQL学习指南笔记领取方式:关注、转发后私信小编【111】即可免费获得《MySQL进阶笔记》的...
- Mysql和Hive之间通过Sqoop进行数据同步
-
文章回顾理论大数据框架原理简介大数据发展历程及技术选型实践搭建大数据运行环境之一搭建大数据运行环境之二本地MAC环境配置CPU数和内存大小查看CPU数sysctl machdep.cpu...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
飞牛OS入门安装遇到问题,如何解决?
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)