ClickHouse为什么查询速度快?
liuian 2025-01-08 15:16 14 浏览
1. 从存储引擎视角看
ClickHouse速度快的秘诀在于——利用存储引擎的特殊设计充分减少磁盘I/O对查询速度的影响。从用户提交一条SQL语句进行查询到最终输出结果的过程中,大量的时间是消耗在了磁盘I/O上,在很多情况下,I/O所占用的时间可以达到整个时间的90%以上。对存储引擎磁盘I/O的优化可以获得非常大的收益。ClickHouse的存储引擎设计中大量优化的目的也是为了减少磁盘I/O。
1.1 预排序
ClickHouse与传统事务数据库的一个不同之处在于ClickHouse写入数据文件的数据是有序的,这就是本节将要介绍的预排序:将数据在写入磁盘前进行排序,以保证数据在磁盘上有序。
预排序在数据库系统是一个被广泛使用的技术,在实现范围查找时,可以将大量的随机读转换为顺序读,从而有效提高I/O效率,降低范围查询时的I/O时间。在点查找时,预排序能做到和未排序数据相同的性能。因此,预排序可以在不降低点查找性能的情况下,有效提高范围查询的性能。
1.2 列存
列存数据库和行存数据库最根本的区别在于列存数据库将一行数据拆分到多个数据文件中。在列存数据库中,同一列的所有数据都在同一个文件中,因此在硬盘上是连续的。这种特性特别适合OLAP的低范式查询场景。
1.3 压缩
ClickHouse的另一个降低I/O的手段是压缩,压缩可以减少读取和写入的数据量,从而减少I/O时间。并不是所有场景下都可以引入压缩的,很显然,压缩必然带来压缩和解压缩的CPU消耗,这是一个利用CPU时间换I/O时间的手段。事务数据库由于大部分情况下是针对行的操作,因此如果对每一行都进行一次压缩解压缩,带来的时间消耗是远大于磁盘I/O时间的。这就是事务数据库没有使用压缩技术的原因。
而ClickHouse则不同,ClickHouse的最小处理单元是块,块一般由8192行数据组成,ClickHouse的一次压缩针对的是8192行数据,这就极大降低CPU的压缩和解压缩时间。同时,ClickHouse是列存数据库,同一列的数据相对更有规律,因此能够带来比较大的压缩比。因此,块+压缩在ClickHouse中成为一个非常关键的优化手段。
2. 从计算引擎视角看
不同于存储引擎的设计,ClickHouse计算引擎的设计在很多方面都有着很大的争议,一方面向量化引擎的精妙设计让人拍案叫绝,另一方面相对粗糙的SQL解析和优化(解释)器也让ClickHouse在执行某些操作时让用户咬牙切齿。
2.1 ClickHouse速度快的前提
首先需要明确一个前提:ClickHous不是在所有场景下都能获得很强的性能。因此,需要先分析ClickHouse在满足哪些前提下才能获得最强的查询性能。
ClickHouse计算引擎最精妙的设计在于向量化引擎,那么ClickHouse由于计算引擎原因导致的快,肯定是来自向量化引擎的加持。而ClickHouse的计算引擎导致的慢是因为缺乏代价优化器,那么由于计算引擎导致的慢也来自缺乏代价优化器带来的缺陷。基于这两个逻辑,可以分析出ClickHouse速度快的前提。
2.1.1 大量使用向量化运算
ClickHouse提供了很多内置函数,在使用这些内置函数时,ClickHouse会自动进行向量化优化。因此尽可能使用提供的内置函数进行计算,而不是自己写SQL语句。下面展示错误的SQL写法以及正确的写法。
SELECT (2/(1.0 + exp(-2 * x))-1) as tanh_x …… // 错误的写法
SELECT tanh(x) as tanh_x …… // 正确的写法,直接使用ClickHouse的内置函数
2.1.2 查询语句中没有使用Join子句,或尽可能少的使用Join操作
ClickHouse没有代价优化器,这导致了ClickHouse在Join操作时会出现内存不足等情况,导致查询失败。Join的性能问题其实并不仅仅是ClickHouse才遇到,任何数据库在遇到大表Join时都有可能导致查询时间暴增。
大数据中的Spark计算引擎对Join操作做了非常多的优化,借助其强大的CBO实现了Join算法的自动选择。更是在此基础上,通过AQE(Adaptive Query Execution,自适应查询引擎),解决了大表Join操作时遇到数据倾斜时的性能问题。
正是由于ClickHouse没有实现CBO,因此ClickHouse在实现Join操作时,选择余地很少。尤其是分布式大表Join操作时,ClickHouse只实现了广播连接(Broadcast Join)算法,极大地降低了ClickHouse的Join能力。
在使用ClickHouse时,应当尽可能避免Join操作。而Join操作在ODS建模的过程中大量存在。因此,ClickHouse在设计良好的DW上运行向量化查询的性能最高。读者应该尽可能避免将ClickHouse用于ODS的建模工作中。当数据量大时,这类建模工作还是尽可能下推到Spark上执行。
2.2 ClickHouse快的本质
ClickHouse在满足上面提到的两个条件时,在不考虑存储引擎影响的情况下,应当能够在计算引擎上达到最大的性能。ClickHouse计算引擎快的本质是利用了CPU提供的硬件加速特性。
除此之外,ClickHouse客观上的确在一些环节存在着一些问题,个人认为这些问题和ClickHouse的定位有关。ClickHouse在设计之初就给自身进行了清晰的定位——充分发挥单机性能的OLAP引擎。在此基础上,分布式的join能力其实并不重要,毕竟业界已经有Spark了,完全可以将ClickHouse建立在Spark之上,由Spark解决建模问题,由ClickHouse强大的DW分析能力实现OLAP的最后一公里问题。
作为用户,应该清晰地了解ClickHouse速度快的前提,有意识地避开ClickHouse的雷区,不要将ClickHouse用于其不擅长的场景。正如此时此刻,大家都意识到了MySQL无法解决大数据量的OLAP问题,这类问题要通过专业的OLAP引擎解决。
总结
本文分别对ClickHouse的存储引擎和计算引擎进行了简单分析,分别得出了ClickHouse速度快的不同的前提。
存储引擎需求的前提如下。
- 使用MergeTree存储引擎。
- 按照业务需求,正确设置数据表的排序键,查询时需满足最左原则。
计算引擎架构要求的前提如下。
- 没有或少用Join操作。
- 尽可能多地使用内置函数。
当满足如上4个条件时,使用ClickHouse才有可能达到比较优秀的性能。
相关推荐
- vue怎么和后端php配合
-
Vue和后端PHP可以通过HTTP请求进行配合。首先,前端Vue可以使用axios库或者Vue自带的$http对象来发送HTTP请求到后端PHP接口。通过axios库发送POST、GET、PUT等请求...
- Ansible最佳实践之 AWX 使用 Ansible 与 API 通信
-
#头条创作挑战赛#API简单介绍红帽AWX提供了一个类似Swagger的RESTful风格的Web服务框架,可以和awx直接交互。使管理员和开发人员能够在webUI之外控制其...
- PHP8.3 错误处理革命:Exception 与 Error 全面升级
-
亲爱的小伙伴,好久没有发布信息了,最近学习了一下PHP8.3的升级,都有哪些优化和提升,把学到的分享出来给需要的小伙伴充下电。技术段位:高可用性必修目标收益:精准错误定位+异常链路追踪适配场景...
- 使用 mix/vega + mix/db 进行现代化的原生 PHP 开发
-
最近几年在javascript、golang生态中游走,发现很多npm、gomod的优点。最近回过头开发MixPHPV3,发现composer其实一直都是一个非常优秀的工具,但是...
- 15 个非常好用的 JSON 工具
-
JSON(JavaScriptObjectNotation)是一种流行的数据交换格式,已经成为许多应用程序中常用的标准。无论您是开发Web应用程序,构建API,还是处理数据,使用JSON工具可以大...
- php8环境原生实现rpc
-
大数据分布式架构盛行时代的程序员面试,常常遇到分布式架构,RPC,本文的主角是RPC,英文名为RemoteProcedureCall,翻译过来为“远程过程调用”。主流的平台中都支持各种远程调用技术...
- 「PHP编程」如何搭建私有Composer包仓库?
-
在前一篇文章「PHP编程」如何制作自己的Composer包?中,我们已经介绍了如何制作自己的composer包,以及如何使用composer安装自己制作的composer包。不过,这其中有...
- WAF-Bypass之SQL注入绕过思路总结
-
过WAF(针对云WAF)寻找真实IP(源站)绕过如果流量都没有经过WAF,WAF当然无法拦截攻击请求。当前多数云WAF架构,例如百度云加速、阿里云盾等,通过更改DNS解析,把流量引入WAF集群,流量经...
- 【推荐】一款 IDEA 必备的 JSON 处理工具插件 — Json Assistant
-
JsonAssistant是基于IntelliJIDEs的JSON工具插件,让JSON处理变得更轻松!主要功能完全支持JSON5JSON窗口(多选项卡)选项卡更名移动至主编辑器用...
- 技术分享 | 利用PHAR协议进行PHP反序列化攻击
-
PHAR(“PhpARchive”)是PHP中的打包文件,相当于Java中的JAR文件,在php5.3或者更高的版本中默认开启。PHAR文件缺省状态是只读的,当我们要创建一个Phar文件需要修改...
- php进阶到架构之swoole系列教程(一)windows安装swoole
-
目录概述安装Cygwin安装swoolephp7进阶到架构师相关阅读概述这是关于php进阶到架构之swoole系列学习课程:第一节:windows安装swoole学习目标:在Windows环境将搭建s...
- go 和 php 性能如何进行对比?
-
PHP性能很差吗?每次讲到PHP和其他语言间的性能对比,似乎都会发现这样一个声音:单纯的性能对比没有意义,主要瓶颈首先是数据库,其次是业务代码等等。好像PHP的性能真的不能单独拿出来讨论似的。但其实一...
- Linux(CentOS )手动搭建LNMP(Linux+Nginx+Mysql+PHP)坏境
-
CentOS搭建LNMP(Linux+Nginx+Mysql+PHP)坏境由于网上各种版本新旧不一,而且Linux版本也不尽相同,所以自己写一遍根据官网的提示自己手动搭建过程。看官方文档很重要,永远...
- json和jsonp区别
-
JSON和JSONP虽然只有一个字母的差别,但其实他们根本不是一回事儿:JSON是一种数据交换格式,而JSONP是一种非官方跨域数据交互协议。一个是描述信息的格式,一个是信息传递的约定方法。一、...
- web后端正确的返回JSON
-
在web开发中,前端和后端发生数据交换传输现在最常见的形式就是异步ajax交互,一般返回给js都是json,如何才是正确的返回呢?前端代码想要获取JSON数据代码如下:$.get('/user-inf...
- 一周热门
-
-
Python实现人事自动打卡,再也不会被批评
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
python使用fitz模块提取pdf中的图片
-
《人人译客》如何规划你的移动电商网站(2)
-
Jupyterhub安装教程 jupyter怎么安装包
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- table.render (33)
- uniapp textarea (33)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- react-admin (33)
- vscode切换git分支 (35)
- vscode美化代码 (33)
- python bytes转16进制 (35)