百度360必应搜狗淘宝本站头条
当前位置:网站首页 > IT知识 > 正文

Clickhouse表引擎介绍

liuian 2025-01-08 15:16 19 浏览

作者:俊达

1 引擎分类

ClickHouse表引擎一共分为四个系列,分别是Log、MergeTree、Integration、Special。其中包含了两种特殊的表引擎Replicated、Distributed,功能上与其他表引擎正交,根据场景组合使用。

2 Log系列

Log系列表引擎功能相对简单,主要用于快速写入小表(1百万行左右的表),然后全部读出的场景。
几种Log表引擎的共性是:

数据被顺序append写到磁盘上。

不支持delete、update。

不支持index。

不支持原子性写。

insert会阻塞select操作。

它们彼此之间的区别是:

TinyLog:不支持并发读取数据文件,查询性能较差;格式简单,适合用来暂存中间数据。

StripLog:支持并发读取数据文件,查询性能比TinyLog好;将所有列存储在同一个大文件中,减少了文件个数。

Log:支持并发读取数据文件,查询性能比TinyLog好;每个列会单独存储在一个独立文件中。

3 Integration系列

该系统表引擎主要用于将外部数据导入到ClickHouse中,或者在ClickHouse中直接操作外部数据源。
Kafka:将Kafka Topic中的数据直接导入到ClickHouse。

MySQL:将Mysql作为存储引擎,直接在ClickHouse中对MySQL表进行select等操作。

JDBC/ODBC:通过指定jdbc、odbc连接串读取数据源。

HDFS:直接读取HDFS上的特定格式的数据文件;

Special系列:Special系列的表引擎,大多是为了特定场景而定制的:

Memory:将数据存储在内存中,重启后会导致数据丢失。查询性能极好,适合于对于数据持久性没有要求的1亿以下的小表。在ClickHouse中,通常用来做临时表。

Buffer:为目标表设置一个内存buffer,当buffer达到了一定条件之后会flush到磁盘。

File:直接将本地文件作为数据存储。

Null:写入数据被丢弃、读取数据为空。

4 MergeTree系列

(1)MergeTree

MergeTree表引擎主要用于海量数据分析,支持数据分区、存储有序、主键索引、稀疏索引、数据TTL等。MergeTree支持所有ClickHouse SQL语法,但是有些功能与MySQL并不一致,比如在MergeTree中主键并不用于去重。

数据TTL

1、基本语法

TTL time_col + INTERVAL ${num} [SECOND|MONTH]

目前TTL可对具体指定列级别、或者表级别进行设置,但是设置后无法取消。

2、实现原理

1)TTL处理逻辑

若表定义中设置了TTL相关设置,在数据写入时,在分区目录下会额外生成一个ttl.txt文件,该文件通过json的格式记录了当前表列级别、表级别的TTL设置,以及当前分区目录下TTL指定时间字段的最小最大值。

MergeTree 以分区目录为单位,通过 ttl.txt文件记录过期时间,并将其作为后续的 判断依据 。

每当写入一批数据时,都会基于INTERVAL表达式的计算结果为这个分区生成 ttl. txt 文件 。

只有在MergeTree合并分区时,才会触发删除 TTL过期数据的逻辑。

在选择删除的分区时,会使用贪婪算法,它的算法规则是尽可能找到会最早过期 的,同时年纪又是最老的分区(合并次数更多 , MaxBlockNum更大的分区目录) 。

如果一个分区内某一列数据因为 TTL 到期全部被删除了,那么在合并之后生成的 新分区目录中,将不会包含这个列字段的数据文件( .bin 和 .mrk)。

2)如何触发TTL

TTL默认合并频率,由参数merge_with_ttl_timeout控制

使用 optimize命令强制触发合并

-- 触发一个分区的合并
optimize TABLE table_name

-- 触发所有分区的合并
optimize TABLE table_name FINAL

(2)ReplacingMergeTree

为了解决MergeTree相同主键无法去重的问题,ClickHouse提供了ReplacingMergeTree引擎,用来做去重。虽然ReplacingMergeTree提供了主键去重的能力,但是仍旧有以下限制:

在没有彻底optimize之前,可能无法达到主键去重的效果,比如部分数据已经被去重,而另外一部分数据仍旧有主键重复。

在分布式场景下,相同primary key的数据可能被sharding到不同节点上,不同shard间可能无法去重。

optimize是后台动作,无法预测具体执行时间点。

手动执行optimize在海量数据场景下要消耗大量时间,无法满足业务即时查询的需求。

ReplacingMergeTree更多被用于确保数据最终被去重,而无法保证查询过程中主键不重复。

(3)SummingMergeTree

ClickHouse通过SummingMergeTree来支持对主键列进行预先聚合。在后台Compaction时,会将主键相同的多行进行sum求和,然后使用一行数据取而代之,从而大幅度降低存储空间占用,提升聚合计算性能。值得注意的是:

ClickHouse只在后台Compaction时才会进行数据的预先聚合,而compaction的执行时机无法预测,所以可能存在部分数据已经被预先聚合、部分数据尚未被聚合的情况。因此,在执行聚合计算时,SQL中仍需要使用GROUP BY子句。

在预先聚合时,ClickHouse会对主键列之外的其他所有列进行预聚合。如果这些列是可聚合的(比如数值类型),则直接sum;如果不可聚合(比如String类型),则随机选择一个值。

通常建议将SummingMergeTree与MergeTree配合使用,使用MergeTree来存储具体明细,使用SummingMergeTree来存储预先聚合的结果加速查询。

-- 建表
CREATE TABLE summtt
(
    key UInt32,
    value UInt32
)
ENGINE = SummingMergeTree()
ORDER BY key

-- 插入数据
INSERT INTO summtt Values(1,1),(1,2),(2,1)

-- compaction前查询,仍存在多行
select * from summtt;
┌─key─┬─value─┐
│   1 │     1 │
│   1 │     2 │
│   2 │     1 │
└─────┴───────┘

-- 通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│   2 │          1 │
│   1 │          3 │
└─────┴────────────┘

-- 强制compaction
optimize table summtt final;

-- compaction后查询,可以看到数据已经被预先聚合
select * from summtt;
┌─key─┬─value─┐
│   1 │     3 │
│   2 │     1 │
└─────┴───────┘


-- compaction后,仍旧需要通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│   2 │          1 │
│   1 │          3 │
└─────┴────────────┘

(4)AggregatingMergeTree

AggregatingMergeTree也是预先聚合引擎的一种,用于提升聚合计算的性能。与SummingMergeTree的区别在于:SummingMergeTree对非主键列进行sum聚合,而AggregatingMergeTree则可以指定各种聚合函数。

AggregatingMergeTree的语法比较复杂,需要结合物化视图或ClickHouse的特殊数据类型AggregateFunction一起使用。在insert和select时,也有独特的写法和要求:写入时需要使用-State语法,查询时使用-Merge语法。

示例一:配合物化视图使用。

-- 建立明细表
CREATE TABLE visits
(
    UserID UInt64,
    CounterID UInt8,
    StartDate Date,
    Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;

-- 对明细表建立物化视图,该物化视图对明细表进行预先聚合
-- 注意:预先聚合使用的函数分别为: sumState, uniqState。对应于写入语法<agg>-State.
CREATE MATERIALIZED VIEW visits_agg_view
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(StartDate) ORDER BY (CounterID, StartDate)
AS SELECT
    CounterID,
    StartDate,
    sumState(Sign)    AS Visits,
    uniqState(UserID) AS Users
FROM visits
GROUP BY CounterID, StartDate;

-- 插入明细数据
INSERT INTO visits VALUES(0, 0, '2019-11-11', 1);
INSERT INTO visits VALUES(1, 1, '2019-11-12', 1);

-- 对物化视图进行最终的聚合操作
-- 注意:使用的聚合函数为 sumMerge, uniqMerge。对应于查询语法<agg>-Merge.
SELECT
    StartDate,
    sumMerge(Visits) AS Visits,
    uniqMerge(Users) AS Users
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;

-- 普通函数 sum, uniq不再可以使用
-- 如下SQL会报错: Illegal type AggregateFunction(sum, Int8) of argument 
SELECT
    StartDate,
    sum(Visits),
    uniq(Users)
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;

示例二:配合特殊数据类型AggregateFunction使用。

-- 建立明细表
CREATE TABLE detail_table
(   CounterID UInt8,
    StartDate Date,
    UserID UInt64
) ENGINE = MergeTree() 
PARTITION BY toYYYYMM(StartDate) 
ORDER BY (CounterID, StartDate);

-- 插入明细数据
INSERT INTO detail_table VALUES(0, '2019-11-11', 1);
INSERT INTO detail_table VALUES(1, '2019-11-12', 1);

-- 建立预先聚合表,
-- 注意:其中UserID一列的类型为:AggregateFunction(uniq, UInt64)
CREATE TABLE agg_table
(   CounterID UInt8,
    StartDate Date,
    UserID AggregateFunction(uniq, UInt64)
) ENGINE = AggregatingMergeTree() 
PARTITION BY toYYYYMM(StartDate) 
ORDER BY (CounterID, StartDate);

-- 从明细表中读取数据,插入聚合表。
-- 注意:子查询中使用的聚合函数为 uniqState, 对应于写入语法<agg>-State
INSERT INTO agg_table
select CounterID, StartDate, uniqState(UserID)
from detail_table
group by CounterID, StartDate

-- 不能使用普通insert语句向AggregatingMergeTree中插入数据。
-- 本SQL会报错:Cannot convert UInt64 to AggregateFunction(uniq, UInt64)
INSERT INTO agg_table VALUES(1, '2019-11-12', 1);

-- 从聚合表中查询。
-- 注意:select中使用的聚合函数为uniqMerge,对应于查询语法<agg>-Merge
SELECT uniqMerge(UserID) AS state 
FROM agg_table 
GROUP BY CounterID, StartDate;

(5)CollapsingMergeTree

ClickHouse实现了CollapsingMergeTree来消除ReplacingMergeTree的功能限制。该引擎要求在建表语句中指定一个标记列Sign,后台Compaction时会将主键相同、Sign相反的行进行折叠,也即删除。

CollapsingMergeTree将行按照Sign的值分为两类:Sign=1的行称之为状态行,Sign=-1的行称之为取消行。

每次需要新增状态时,写入一行状态行;需要删除状态时,则写入一行取消行。

在后台Compaction时,状态行与取消行会自动做折叠(删除)处理。而尚未进行Compaction的数据,状态行与取消行同时存在。

因此为了能够达到主键折叠(删除)的目的,需要业务层进行适当改造:

执行删除操作需要写入取消行,而取消行中需要包含与原始状态行主键一样的数据(Sign列除外)。所以在应用层需要记录原始状态行的值,或者在执行删除操作前先查询数据库获取原始状态行。

由于后台Compaction时机无法预测,在发起查询时,状态行和取消行可能尚未被折叠;另外,ClickHouse无法保证primary

key相同的行落在同一个节点上,不在同一节点上的数据无法折叠。因此在进行count()、sum(col)等聚合计算时,可能会存在数据冗余的情况。为了获得正确结果,业务层需要改写SQL,将count()、sum(col)分别改写为sum(Sign)、sum(col Sign)。

CollapsingMergeTree虽然解决了主键相同的数据即时删除的问题,但是状态持续变化且多线程并行写入情况下,状态行与取消行位置可能乱序,导致无法正常折叠。

-- 建表
CREATE TABLE UAct
(
    UserID UInt64,
    PageViews UInt8,
    Duration UInt8,
    Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;

-- 插入状态行,注意sign一列的值为1
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, 1);

-- 插入一行取消行,用于抵消上述状态行。注意sign一列的值为-1,其余值与状态行一致;
-- 并且插入一行主键相同的新状态行,用来将PageViews从5更新至6,将Duration从146更新为185.
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, -1), (4324182021466249494, 6, 185, 1);

-- 查询数据:可以看到未Compaction之前,状态行与取消行共存。
SELECT * FROM UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │   -1 │
│ 4324182021466249494 │         6 │      185 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

-- 为了获取正确的sum值,需要改写SQL: 
-- sum(PageViews) => sum(PageViews * Sign)、 
-- sum(Duration) => sum(Duration * Sign)
SELECT
    UserID,
    sum(PageViews * Sign) AS PageViews,
    sum(Duration * Sign) AS Duration
FROM UAct
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 4324182021466249494 │         6 │      185 │
└─────────────────────┴───────────┴──────────┘


-- 强制后台Compaction
optimize table UAct final;

-- 再次查询,可以看到状态行、取消行已经被折叠,只剩下最新的一行状态行。
select * from UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         6 │      185 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

多线程并发写入下导致数据混乱的示例

-- 建表
CREATE TABLE UAct_order
(
    UserID UInt64,
    PageViews UInt8,
    Duration UInt8,
    Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;

-- 先插入取消行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, -1);
-- 后插入状态行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, 1);

-- 强制Compaction
optimize table UAct_order final;

-- 可以看到即便Compaction之后也无法进行主键折叠: 2行数据仍旧都存在。
select * from UAct_order;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249495 │         5 │      146 │   -1 │
│ 4324182021466249495 │         5 │      146 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘

(6)VersionedCollapsingMergeTree

为了解决CollapsingMergeTree乱序写入情况下无法正常折叠问题,VersionedCollapsingMergeTree表引擎在建表语句中新增了一列Version,用于在乱序情况下记录状态行与取消行的对应关系。主键相同,且Version相同、Sign相反的行,在Compaction时会被删除。与CollapsingMergeTree类似, 为了获得正确结果,业务层需要改写SQL,将count()、sum(col)分别改写为sum(Sign)、sum(col * Sign)。

-- 建表
CREATE TABLE UAct_version
(
    UserID UInt64,
    PageViews UInt8,
    Duration UInt8,
    Sign Int8,
    Version UInt8
)
ENGINE = VersionedCollapsingMergeTree(Sign, Version)
ORDER BY UserID;


-- 先插入一行取消行,注意Signz=-1, Version=1
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, -1, 1);

-- 后插入一行状态行,注意Sign=1, Version=1;及一行新的状态行注意Sign=1, Version=2,将PageViews从5更新至6,将Duration从146更新为185。
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, 1, 1),(4324182021466249494, 6, 185, 1, 2);


-- 查询可以看到未compaction情况下,所有行都可见。
SELECT * FROM UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │   -1 │
│ 4324182021466249494 │         6 │      185 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │         5 │      146 │    1 │
└─────────────────────┴───────────┴──────────┴──────┘


-- 为了获取正确的sum值,需要改写SQL: 
-- sum(PageViews) => sum(PageViews * Sign)、 
-- sum(Duration) => sum(Duration * Sign)
SELECT
    UserID,
    sum(PageViews * Sign) AS PageViews,
    sum(Duration * Sign) AS Duration
FROM UAct_version
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 4324182021466249494 │         6 │      185 │
└─────────────────────┴───────────┴──────────┘


-- 强制后台Compaction
optimize table UAct_version final;


-- 再次查询,可以看到即便取消行与状态行位置乱序,仍旧可以被正确折叠。
select * from UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┬─Version─┐
│ 4324182021466249494 │         6 │      185 │    1 │       2 │
└─────────────────────┴───────────┴──────────┴──────┴─────────┘

更多技术信息请查看云掣官网云掣YunChe - 可观测运维专家 | 大数据运维托管 | 云MSP服务

相关推荐

快速上手maven

Maven的作用在开发过程中需要用到各种各样的jar包,查找和下载这些jar包是件费时费力的事,特别是英文官方网站,可以将Maven看成一个整合了所有开源jar包的合集,我们需要jar包只需要从Mav...

Windows系统——配置java环境变量

怎么配置java环境变量呢?首先是安装好jdk然后我的电脑右键选择属性然后选择左侧高级系统设置高级然后点环境变量然后在用户变量或系统变量中配置,用户变量指的是只有当前用户可用,系统变量指的是系统中...

ollama本地部署更改默认C盘,Windows配置环境变量方法

ollama是一个大语言模型(LLM——LargeLanguageModel),本地电脑安装网上也要很多教程,看上去非常简单,一直下一步,然后直接就可以使用了。但是我在实操的时候并不是这样,安装完...

# Windows 环境变量 Path 显示样式更改

#怎样学习Java##Windows环境变量Path显示样式更改##1、传统Path环境变量显示:```---》键盘上按【WIN+I】打开系统【设置】---》依次点击---》【系统...

如何在Windows中创建用户和系统环境变量

在Windows中创建环境变量之前您应该了解的事情在按照本指南中所示的任何步骤创建指向文件夹、文件或其他任何内容的用户和系统变量之前,您应该了解两件事。第一个也是最重要的一个是了解什么是环境变量。...

Windows 中的环境变量是什么?

Windows中的环境变量是什么?那么,Windows中的环境变量是什么?简而言之,环境变量是描述应用程序和程序运行环境的变量。所有类型的程序都使用环境变量来回答以下问题:我安装的计算机的名称是什么...

【Python程序开发系列】谈一谈Windows环境变量:系统和用户变量

这是我的第350篇原创文章。一、引言环境变量(environmentvariables)一般是指在操作系统中用来指定操作系统运行环境的一些参数,如:临时文件夹位置和系统文件夹位置等。环境变量是在操作...

系统小技巧:还原Windows10路径环境变量

有时,我们在Windows10的“运行”窗口中执行一些命令或运行一些程序,这时即便没有指定程序的具体路径,只输入程序的名称(如notepad.exe),便可以迅速调用成功。这是因为Windows默认...

Windows10系统的“环境变量”在哪里呢?

当我们在操作系统是Windows10的电脑里安装了一些软件,要通过配置环境变量才能使用软件时,在哪里能找到“环境变量”窗口呢?可以按照下面的步骤找到“环境变量”。说明:下面的步骤和截图是在Window...

系统小技巧:彻底弄懂Windows 10环境变量

每当我们进行系统清理时,清理软件总能自动找到Windows的临时文件夹之所在,然后加以清理,即便是我们重定向了TEMP目录也是如此。究其原因,是因为清理软件会根据TEMP环境变量来判断现有临时文件夹的...

MySQL 5.7 新特性大全和未来展望

本文转自微信公众号:高可用架构作者:杨尚刚引用美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计。前新浪高级数据库工程师,负责新浪微博核心数据库架构改造优化,以及数据库相关的服务器存...

MySQL系列-源码编译安装(v8.0.25)

一、前言生产环境建议使用二进制安装法,其优点是部署简单、快速、方便,并且相对"yum/rpm安装"方法能更方便地自定义文件存放的目录结构,方便用脚本批量部署,方便日后运维管理。在生产...

MySQL如何实时同步数据到ES?试试这款阿里开源的神器!

前几天在网上冲浪的时候发现了一个比较成熟的开源中间件——Canal。在了解了它的工作原理和使用场景后,顿时产生了浓厚的兴趣。今天,就让我们跟随我的脚步,一起来揭开它神秘的面纱吧。简介canal翻译为...

技术老兵十年专攻MySQL:编写了763页核心总结,90%MySQL问题全解

MySQL是开放源码的关系数据库管理系统,由于性能高、成本低、可靠性好,成为现在最流行的开源数据库。MySQL学习指南笔记领取方式:关注、转发后私信小编【111】即可免费获得《MySQL进阶笔记》的...

Mysql和Hive之间通过Sqoop进行数据同步

文章回顾理论大数据框架原理简介大数据发展历程及技术选型实践搭建大数据运行环境之一搭建大数据运行环境之二本地MAC环境配置CPU数和内存大小查看CPU数sysctl machdep.cpu...