Clickhouse表引擎介绍
liuian 2025-01-08 15:16 30 浏览
作者:俊达
1 引擎分类
ClickHouse表引擎一共分为四个系列,分别是Log、MergeTree、Integration、Special。其中包含了两种特殊的表引擎Replicated、Distributed,功能上与其他表引擎正交,根据场景组合使用。
2 Log系列
Log系列表引擎功能相对简单,主要用于快速写入小表(1百万行左右的表),然后全部读出的场景。
几种Log表引擎的共性是:
数据被顺序append写到磁盘上。
不支持delete、update。
不支持index。
不支持原子性写。
insert会阻塞select操作。
它们彼此之间的区别是:
TinyLog:不支持并发读取数据文件,查询性能较差;格式简单,适合用来暂存中间数据。
StripLog:支持并发读取数据文件,查询性能比TinyLog好;将所有列存储在同一个大文件中,减少了文件个数。
Log:支持并发读取数据文件,查询性能比TinyLog好;每个列会单独存储在一个独立文件中。
3 Integration系列
该系统表引擎主要用于将外部数据导入到ClickHouse中,或者在ClickHouse中直接操作外部数据源。
Kafka:将Kafka Topic中的数据直接导入到ClickHouse。
MySQL:将Mysql作为存储引擎,直接在ClickHouse中对MySQL表进行select等操作。
JDBC/ODBC:通过指定jdbc、odbc连接串读取数据源。
HDFS:直接读取HDFS上的特定格式的数据文件;
Special系列:Special系列的表引擎,大多是为了特定场景而定制的:
Memory:将数据存储在内存中,重启后会导致数据丢失。查询性能极好,适合于对于数据持久性没有要求的1亿以下的小表。在ClickHouse中,通常用来做临时表。
Buffer:为目标表设置一个内存buffer,当buffer达到了一定条件之后会flush到磁盘。
File:直接将本地文件作为数据存储。
Null:写入数据被丢弃、读取数据为空。
4 MergeTree系列
(1)MergeTree
MergeTree表引擎主要用于海量数据分析,支持数据分区、存储有序、主键索引、稀疏索引、数据TTL等。MergeTree支持所有ClickHouse SQL语法,但是有些功能与MySQL并不一致,比如在MergeTree中主键并不用于去重。
数据TTL
1、基本语法
TTL time_col + INTERVAL ${num} [SECOND|MONTH]
目前TTL可对具体指定列级别、或者表级别进行设置,但是设置后无法取消。
2、实现原理
1)TTL处理逻辑
若表定义中设置了TTL相关设置,在数据写入时,在分区目录下会额外生成一个ttl.txt文件,该文件通过json的格式记录了当前表列级别、表级别的TTL设置,以及当前分区目录下TTL指定时间字段的最小最大值。
MergeTree 以分区目录为单位,通过 ttl.txt文件记录过期时间,并将其作为后续的 判断依据 。
每当写入一批数据时,都会基于INTERVAL表达式的计算结果为这个分区生成 ttl. txt 文件 。
只有在MergeTree合并分区时,才会触发删除 TTL过期数据的逻辑。
在选择删除的分区时,会使用贪婪算法,它的算法规则是尽可能找到会最早过期 的,同时年纪又是最老的分区(合并次数更多 , MaxBlockNum更大的分区目录) 。
如果一个分区内某一列数据因为 TTL 到期全部被删除了,那么在合并之后生成的 新分区目录中,将不会包含这个列字段的数据文件( .bin 和 .mrk)。
2)如何触发TTL
TTL默认合并频率,由参数merge_with_ttl_timeout控制
使用 optimize命令强制触发合并
-- 触发一个分区的合并
optimize TABLE table_name
-- 触发所有分区的合并
optimize TABLE table_name FINAL
(2)ReplacingMergeTree
为了解决MergeTree相同主键无法去重的问题,ClickHouse提供了ReplacingMergeTree引擎,用来做去重。虽然ReplacingMergeTree提供了主键去重的能力,但是仍旧有以下限制:
在没有彻底optimize之前,可能无法达到主键去重的效果,比如部分数据已经被去重,而另外一部分数据仍旧有主键重复。
在分布式场景下,相同primary key的数据可能被sharding到不同节点上,不同shard间可能无法去重。
optimize是后台动作,无法预测具体执行时间点。
手动执行optimize在海量数据场景下要消耗大量时间,无法满足业务即时查询的需求。
ReplacingMergeTree更多被用于确保数据最终被去重,而无法保证查询过程中主键不重复。
(3)SummingMergeTree
ClickHouse通过SummingMergeTree来支持对主键列进行预先聚合。在后台Compaction时,会将主键相同的多行进行sum求和,然后使用一行数据取而代之,从而大幅度降低存储空间占用,提升聚合计算性能。值得注意的是:
ClickHouse只在后台Compaction时才会进行数据的预先聚合,而compaction的执行时机无法预测,所以可能存在部分数据已经被预先聚合、部分数据尚未被聚合的情况。因此,在执行聚合计算时,SQL中仍需要使用GROUP BY子句。
在预先聚合时,ClickHouse会对主键列之外的其他所有列进行预聚合。如果这些列是可聚合的(比如数值类型),则直接sum;如果不可聚合(比如String类型),则随机选择一个值。
通常建议将SummingMergeTree与MergeTree配合使用,使用MergeTree来存储具体明细,使用SummingMergeTree来存储预先聚合的结果加速查询。
-- 建表
CREATE TABLE summtt
(
key UInt32,
value UInt32
)
ENGINE = SummingMergeTree()
ORDER BY key
-- 插入数据
INSERT INTO summtt Values(1,1),(1,2),(2,1)
-- compaction前查询,仍存在多行
select * from summtt;
┌─key─┬─value─┐
│ 1 │ 1 │
│ 1 │ 2 │
│ 2 │ 1 │
└─────┴───────┘
-- 通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│ 2 │ 1 │
│ 1 │ 3 │
└─────┴────────────┘
-- 强制compaction
optimize table summtt final;
-- compaction后查询,可以看到数据已经被预先聚合
select * from summtt;
┌─key─┬─value─┐
│ 1 │ 3 │
│ 2 │ 1 │
└─────┴───────┘
-- compaction后,仍旧需要通过GROUP BY进行聚合计算
SELECT key, sum(value) FROM summtt GROUP BY key
┌─key─┬─sum(value)─┐
│ 2 │ 1 │
│ 1 │ 3 │
└─────┴────────────┘
(4)AggregatingMergeTree
AggregatingMergeTree也是预先聚合引擎的一种,用于提升聚合计算的性能。与SummingMergeTree的区别在于:SummingMergeTree对非主键列进行sum聚合,而AggregatingMergeTree则可以指定各种聚合函数。
AggregatingMergeTree的语法比较复杂,需要结合物化视图或ClickHouse的特殊数据类型AggregateFunction一起使用。在insert和select时,也有独特的写法和要求:写入时需要使用-State语法,查询时使用-Merge语法。
示例一:配合物化视图使用。
-- 建立明细表
CREATE TABLE visits
(
UserID UInt64,
CounterID UInt8,
StartDate Date,
Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;
-- 对明细表建立物化视图,该物化视图对明细表进行预先聚合
-- 注意:预先聚合使用的函数分别为: sumState, uniqState。对应于写入语法<agg>-State.
CREATE MATERIALIZED VIEW visits_agg_view
ENGINE = AggregatingMergeTree() PARTITION BY toYYYYMM(StartDate) ORDER BY (CounterID, StartDate)
AS SELECT
CounterID,
StartDate,
sumState(Sign) AS Visits,
uniqState(UserID) AS Users
FROM visits
GROUP BY CounterID, StartDate;
-- 插入明细数据
INSERT INTO visits VALUES(0, 0, '2019-11-11', 1);
INSERT INTO visits VALUES(1, 1, '2019-11-12', 1);
-- 对物化视图进行最终的聚合操作
-- 注意:使用的聚合函数为 sumMerge, uniqMerge。对应于查询语法<agg>-Merge.
SELECT
StartDate,
sumMerge(Visits) AS Visits,
uniqMerge(Users) AS Users
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;
-- 普通函数 sum, uniq不再可以使用
-- 如下SQL会报错: Illegal type AggregateFunction(sum, Int8) of argument
SELECT
StartDate,
sum(Visits),
uniq(Users)
FROM visits_agg_view
GROUP BY StartDate
ORDER BY StartDate;
示例二:配合特殊数据类型AggregateFunction使用。
-- 建立明细表
CREATE TABLE detail_table
( CounterID UInt8,
StartDate Date,
UserID UInt64
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate);
-- 插入明细数据
INSERT INTO detail_table VALUES(0, '2019-11-11', 1);
INSERT INTO detail_table VALUES(1, '2019-11-12', 1);
-- 建立预先聚合表,
-- 注意:其中UserID一列的类型为:AggregateFunction(uniq, UInt64)
CREATE TABLE agg_table
( CounterID UInt8,
StartDate Date,
UserID AggregateFunction(uniq, UInt64)
) ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate);
-- 从明细表中读取数据,插入聚合表。
-- 注意:子查询中使用的聚合函数为 uniqState, 对应于写入语法<agg>-State
INSERT INTO agg_table
select CounterID, StartDate, uniqState(UserID)
from detail_table
group by CounterID, StartDate
-- 不能使用普通insert语句向AggregatingMergeTree中插入数据。
-- 本SQL会报错:Cannot convert UInt64 to AggregateFunction(uniq, UInt64)
INSERT INTO agg_table VALUES(1, '2019-11-12', 1);
-- 从聚合表中查询。
-- 注意:select中使用的聚合函数为uniqMerge,对应于查询语法<agg>-Merge
SELECT uniqMerge(UserID) AS state
FROM agg_table
GROUP BY CounterID, StartDate;
(5)CollapsingMergeTree
ClickHouse实现了CollapsingMergeTree来消除ReplacingMergeTree的功能限制。该引擎要求在建表语句中指定一个标记列Sign,后台Compaction时会将主键相同、Sign相反的行进行折叠,也即删除。
CollapsingMergeTree将行按照Sign的值分为两类:Sign=1的行称之为状态行,Sign=-1的行称之为取消行。
每次需要新增状态时,写入一行状态行;需要删除状态时,则写入一行取消行。
在后台Compaction时,状态行与取消行会自动做折叠(删除)处理。而尚未进行Compaction的数据,状态行与取消行同时存在。
因此为了能够达到主键折叠(删除)的目的,需要业务层进行适当改造:
执行删除操作需要写入取消行,而取消行中需要包含与原始状态行主键一样的数据(Sign列除外)。所以在应用层需要记录原始状态行的值,或者在执行删除操作前先查询数据库获取原始状态行。
由于后台Compaction时机无法预测,在发起查询时,状态行和取消行可能尚未被折叠;另外,ClickHouse无法保证primary
key相同的行落在同一个节点上,不在同一节点上的数据无法折叠。因此在进行count()、sum(col)等聚合计算时,可能会存在数据冗余的情况。为了获得正确结果,业务层需要改写SQL,将count()、sum(col)分别改写为sum(Sign)、sum(col Sign)。
CollapsingMergeTree虽然解决了主键相同的数据即时删除的问题,但是状态持续变化且多线程并行写入情况下,状态行与取消行位置可能乱序,导致无法正常折叠。
-- 建表
CREATE TABLE UAct
(
UserID UInt64,
PageViews UInt8,
Duration UInt8,
Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;
-- 插入状态行,注意sign一列的值为1
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, 1);
-- 插入一行取消行,用于抵消上述状态行。注意sign一列的值为-1,其余值与状态行一致;
-- 并且插入一行主键相同的新状态行,用来将PageViews从5更新至6,将Duration从146更新为185.
INSERT INTO UAct VALUES (4324182021466249494, 5, 146, -1), (4324182021466249494, 6, 185, 1);
-- 查询数据:可以看到未Compaction之前,状态行与取消行共存。
SELECT * FROM UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ -1 │
│ 4324182021466249494 │ 6 │ 185 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
-- 为了获取正确的sum值,需要改写SQL:
-- sum(PageViews) => sum(PageViews * Sign)、
-- sum(Duration) => sum(Duration * Sign)
SELECT
UserID,
sum(PageViews * Sign) AS PageViews,
sum(Duration * Sign) AS Duration
FROM UAct
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 4324182021466249494 │ 6 │ 185 │
└─────────────────────┴───────────┴──────────┘
-- 强制后台Compaction
optimize table UAct final;
-- 再次查询,可以看到状态行、取消行已经被折叠,只剩下最新的一行状态行。
select * from UAct;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 6 │ 185 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
多线程并发写入下导致数据混乱的示例
-- 建表
CREATE TABLE UAct_order
(
UserID UInt64,
PageViews UInt8,
Duration UInt8,
Sign Int8
)
ENGINE = CollapsingMergeTree(Sign)
ORDER BY UserID;
-- 先插入取消行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, -1);
-- 后插入状态行
INSERT INTO UAct_order VALUES (4324182021466249495, 5, 146, 1);
-- 强制Compaction
optimize table UAct_order final;
-- 可以看到即便Compaction之后也无法进行主键折叠: 2行数据仍旧都存在。
select * from UAct_order;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249495 │ 5 │ 146 │ -1 │
│ 4324182021466249495 │ 5 │ 146 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
(6)VersionedCollapsingMergeTree
为了解决CollapsingMergeTree乱序写入情况下无法正常折叠问题,VersionedCollapsingMergeTree表引擎在建表语句中新增了一列Version,用于在乱序情况下记录状态行与取消行的对应关系。主键相同,且Version相同、Sign相反的行,在Compaction时会被删除。与CollapsingMergeTree类似, 为了获得正确结果,业务层需要改写SQL,将count()、sum(col)分别改写为sum(Sign)、sum(col * Sign)。
-- 建表
CREATE TABLE UAct_version
(
UserID UInt64,
PageViews UInt8,
Duration UInt8,
Sign Int8,
Version UInt8
)
ENGINE = VersionedCollapsingMergeTree(Sign, Version)
ORDER BY UserID;
-- 先插入一行取消行,注意Signz=-1, Version=1
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, -1, 1);
-- 后插入一行状态行,注意Sign=1, Version=1;及一行新的状态行注意Sign=1, Version=2,将PageViews从5更新至6,将Duration从146更新为185。
INSERT INTO UAct_version VALUES (4324182021466249494, 5, 146, 1, 1),(4324182021466249494, 6, 185, 1, 2);
-- 查询可以看到未compaction情况下,所有行都可见。
SELECT * FROM UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ -1 │
│ 4324182021466249494 │ 6 │ 185 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┐
│ 4324182021466249494 │ 5 │ 146 │ 1 │
└─────────────────────┴───────────┴──────────┴──────┘
-- 为了获取正确的sum值,需要改写SQL:
-- sum(PageViews) => sum(PageViews * Sign)、
-- sum(Duration) => sum(Duration * Sign)
SELECT
UserID,
sum(PageViews * Sign) AS PageViews,
sum(Duration * Sign) AS Duration
FROM UAct_version
GROUP BY UserID
HAVING sum(Sign) > 0;
┌──────────────UserID─┬─PageViews─┬─Duration─┐
│ 4324182021466249494 │ 6 │ 185 │
└─────────────────────┴───────────┴──────────┘
-- 强制后台Compaction
optimize table UAct_version final;
-- 再次查询,可以看到即便取消行与状态行位置乱序,仍旧可以被正确折叠。
select * from UAct_version;
┌──────────────UserID─┬─PageViews─┬─Duration─┬─Sign─┬─Version─┐
│ 4324182021466249494 │ 6 │ 185 │ 1 │ 2 │
└─────────────────────┴───────────┴──────────┴──────┴─────────┘
更多技术信息请查看云掣官网云掣YunChe - 可观测运维专家 | 大数据运维托管 | 云MSP服务
相关推荐
- 教你把多个视频合并成一个视频的方法
-
一.情况介绍当你有一个m3u8文件和一个目录,目录中有连续的视频片段,这些片段可以连成一段完整的视频。m3u8文件打开后像这样:m3u8文件,可以理解为播放列表,里面是播放视频片段的顺序。视频片段像这...
- 零代码编程:用kimichat合并一个文件夹下的多个文件
-
一个文件夹里面有很多个srt字幕文件,如何借助kimichat来自动批量合并呢?在kimichat对话框中输入提示词:你是一个Python编程专家,完成如下的编程任务:这个文件夹:D:\downloa...
- Java APT_java APT 生成代码
-
JavaAPT(AnnotationProcessingTool)是一种在Java编译阶段处理注解的工具。APT会在编译阶段扫描源代码中的注解,并根据这些注解生成代码、资源文件或其他输出,...
- Unit Runtime:一键运行 AI 生成的代码,或许将成为你的复制 + 粘贴神器
-
在我们构建了UnitMesh架构之后,以及对应的demo之后,便着手于实现UnitMesh架构。于是,我们就继续开始UnitRuntime,以用于直接运行AI生成的代码。PS:...
- 挣脱臃肿的枷锁:为什么说Vert.x是Java开发者手中的一柄利剑?
-
如果你是一名Java开发者,那么你的职业生涯几乎无法避开Spring。它如同一位德高望重的老国王,统治着企业级应用开发的大片疆土。SpringBoot的约定大于配置、SpringCloud的微服务...
- 五年后,谷歌还在全力以赴发展 Kotlin
-
作者|FredericLardinois译者|Sambodhi策划|Tina自2017年谷歌I/O全球开发者大会上,谷歌首次宣布将Kotlin(JetBrains开发的Ja...
- kotlin和java开发哪个好,优缺点对比
-
Kotlin和Java都是常见的编程语言,它们有各自的优缺点。Kotlin的优点:简洁:Kotlin程序相对于Java程序更简洁,可以减少代码量。安全:Kotlin在类型系统和空值安全...
- 移动端架构模式全景解析:从MVC到MVVM,如何选择最佳设计方案?
-
掌握不同架构模式的精髓,是构建可维护、可测试且高效移动应用的关键。在移动应用开发中,选择合适的软件架构模式对项目的可维护性、可测试性和团队协作效率至关重要。随着应用复杂度的增加,一个良好的架构能够帮助...
- 颜值非常高的XShell替代工具Termora,不一样的使用体验!
-
Termora是一款面向开发者和运维人员的跨平台SSH终端与文件管理工具,支持Windows、macOS及Linux系统,通过一体化界面简化远程服务器管理流程。其核心定位是解决多平台环境下远程连接、文...
- 预处理的底层原理和预处理编译运行异常的解决方案
-
若文章对您有帮助,欢迎关注程序员小迷。助您在编程路上越走越好![Mac-10.7.1LionIntel-based]Q:预处理到底干了什么事情?A:预处理,顾名思义,预先做的处理。源代码中...
- 为“架构”再建个模:如何用代码描述软件架构?
-
在架构治理平台ArchGuard中,为了实现对架构的治理,我们需要代码+模型描述所要处理的内容和数据。所以,在ArchGuard中,我们有了代码的模型、依赖的模型、变更的模型等,剩下的两个...
- 深度解析:Google Gemma 3n —— 移动优先的轻量多模态大模型
-
2025年6月,Google正式发布了Gemma3n,这是一款能够在2GB内存环境下运行的轻量级多模态大模型。它延续了Gemma家族的开源基因,同时在架构设计上大幅优化,目标是让...
- 比分网开发技术栈与功能详解_比分网有哪些
-
一、核心功能模块一个基本的比分网通常包含以下模块:首页/总览实时比分看板:滚动展示所有正在进行的比赛,包含比分、比赛时间、红黄牌等关键信息。热门赛事/焦点战:突出显示重要的、关注度高的比赛。赛事导航...
- 设计模式之-生成器_一键生成设计
-
一、【概念定义】——“分步构建复杂对象,隐藏创建细节”生成器模式(BuilderPattern):一种“分步构建型”创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建...
- 构建第一个 Kotlin Android 应用_kotlin简介
-
第一步:安装AndroidStudio(推荐IDE)AndroidStudio是官方推荐的Android开发集成开发环境(IDE),内置对Kotlin的完整支持。1.下载And...
- 一周热门
-
-
【验证码逆向专栏】vaptcha 手势验证码逆向分析
-
Psutil + Flask + Pyecharts + Bootstrap 开发动态可视化系统监控
-
一个解决支持HTML/CSS/JS网页转PDF(高质量)的终极解决方案
-
再见Swagger UI 国人开源了一款超好用的 API 文档生成框架,真香
-
网页转成pdf文件的经验分享 网页转成pdf文件的经验分享怎么弄
-
C++ std::vector 简介
-
飞牛OS入门安装遇到问题,如何解决?
-
系统C盘清理:微信PC端文件清理,扩大C盘可用空间步骤
-
10款高性能NAS丨双十一必看,轻松搞定虚拟机、Docker、软路由
-
python使用fitz模块提取pdf中的图片
-
- 最近发表
- 标签列表
-
- python判断字典是否为空 (50)
- crontab每周一执行 (48)
- aes和des区别 (43)
- bash脚本和shell脚本的区别 (35)
- canvas库 (33)
- dataframe筛选满足条件的行 (35)
- gitlab日志 (33)
- lua xpcall (36)
- blob转json (33)
- python判断是否在列表中 (34)
- python html转pdf (36)
- 安装指定版本npm (37)
- idea搜索jar包内容 (33)
- css鼠标悬停出现隐藏的文字 (34)
- linux nacos启动命令 (33)
- gitlab 日志 (36)
- adb pull (37)
- python判断元素在不在列表里 (34)
- python 字典删除元素 (34)
- vscode切换git分支 (35)
- python bytes转16进制 (35)
- grep前后几行 (34)
- hashmap转list (35)
- c++ 字符串查找 (35)
- mysql刷新权限 (34)